diff -r 46cc6708c3b3 -r fa810f01f7b5 Quot/Nominal/Nominal2_Base.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Quot/Nominal/Nominal2_Base.thy Tue Jan 26 20:07:50 2010 +0100 @@ -0,0 +1,959 @@ +(* Title: Nominal2_Base + Authors: Brian Huffman, Christian Urban + + Basic definitions and lemma infrastructure for + Nominal Isabelle. +*) +theory Nominal2_Base +imports Main Infinite_Set +begin + +section {* Atoms and Sorts *} + +text {* A simple implementation for atom_sorts is strings. *} +(* types atom_sort = string *) + +text {* To deal with Church-like binding we use trees of + strings as sorts. *} + +datatype atom_sort = Sort "string" "atom_sort list" + +datatype atom = Atom atom_sort nat + + +text {* Basic projection function. *} + +primrec + sort_of :: "atom \ atom_sort" +where + "sort_of (Atom s i) = s" + + +text {* There are infinitely many atoms of each sort. *} +lemma INFM_sort_of_eq: + shows "INFM a. sort_of a = s" +proof - + have "INFM i. sort_of (Atom s i) = s" by simp + moreover have "inj (Atom s)" by (simp add: inj_on_def) + ultimately show "INFM a. sort_of a = s" by (rule INFM_inj) +qed + +lemma infinite_sort_of_eq: + shows "infinite {a. sort_of a = s}" + using INFM_sort_of_eq unfolding INFM_iff_infinite . + +lemma atom_infinite [simp]: + shows "infinite (UNIV :: atom set)" + using subset_UNIV infinite_sort_of_eq + by (rule infinite_super) + +lemma obtain_atom: + fixes X :: "atom set" + assumes X: "finite X" + obtains a where "a \ X" "sort_of a = s" +proof - + from X have "MOST a. a \ X" + unfolding MOST_iff_cofinite by simp + with INFM_sort_of_eq + have "INFM a. sort_of a = s \ a \ X" + by (rule INFM_conjI) + then obtain a where "a \ X" "sort_of a = s" + by (auto elim: INFM_E) + then show ?thesis .. +qed + +section {* Sort-Respecting Permutations *} + +typedef perm = + "{f. bij f \ finite {a. f a \ a} \ (\a. sort_of (f a) = sort_of a)}" +proof + show "id \ ?perm" by simp +qed + +lemma permI: + assumes "bij f" and "MOST x. f x = x" and "\a. sort_of (f a) = sort_of a" + shows "f \ perm" + using assms unfolding perm_def MOST_iff_cofinite by simp + +lemma perm_is_bij: "f \ perm \ bij f" + unfolding perm_def by simp + +lemma perm_is_finite: "f \ perm \ finite {a. f a \ a}" + unfolding perm_def by simp + +lemma perm_is_sort_respecting: "f \ perm \ sort_of (f a) = sort_of a" + unfolding perm_def by simp + +lemma perm_MOST: "f \ perm \ MOST x. f x = x" + unfolding perm_def MOST_iff_cofinite by simp + +lemma perm_id: "id \ perm" + unfolding perm_def by simp + +lemma perm_comp: + assumes f: "f \ perm" and g: "g \ perm" + shows "(f \ g) \ perm" +apply (rule permI) +apply (rule bij_comp) +apply (rule perm_is_bij [OF g]) +apply (rule perm_is_bij [OF f]) +apply (rule MOST_rev_mp [OF perm_MOST [OF g]]) +apply (rule MOST_rev_mp [OF perm_MOST [OF f]]) +apply (simp) +apply (simp add: perm_is_sort_respecting [OF f]) +apply (simp add: perm_is_sort_respecting [OF g]) +done + +lemma perm_inv: + assumes f: "f \ perm" + shows "(inv f) \ perm" +apply (rule permI) +apply (rule bij_imp_bij_inv) +apply (rule perm_is_bij [OF f]) +apply (rule MOST_mono [OF perm_MOST [OF f]]) +apply (erule subst, rule inv_f_f) +apply (rule bij_is_inj [OF perm_is_bij [OF f]]) +apply (rule perm_is_sort_respecting [OF f, THEN sym, THEN trans]) +apply (simp add: surj_f_inv_f [OF bij_is_surj [OF perm_is_bij [OF f]]]) +done + +lemma bij_Rep_perm: "bij (Rep_perm p)" + using Rep_perm [of p] unfolding perm_def by simp + +lemma finite_Rep_perm: "finite {a. Rep_perm p a \ a}" + using Rep_perm [of p] unfolding perm_def by simp + +lemma sort_of_Rep_perm: "sort_of (Rep_perm p a) = sort_of a" + using Rep_perm [of p] unfolding perm_def by simp + +lemma Rep_perm_ext: + "Rep_perm p1 = Rep_perm p2 \ p1 = p2" + by (simp add: expand_fun_eq Rep_perm_inject [symmetric]) + + +subsection {* Permutations form a group *} + +instantiation perm :: group_add +begin + +definition + "0 = Abs_perm id" + +definition + "- p = Abs_perm (inv (Rep_perm p))" + +definition + "p + q = Abs_perm (Rep_perm p \ Rep_perm q)" + +definition + "(p1::perm) - p2 = p1 + - p2" + +lemma Rep_perm_0: "Rep_perm 0 = id" + unfolding zero_perm_def + by (simp add: Abs_perm_inverse perm_id) + +lemma Rep_perm_add: + "Rep_perm (p1 + p2) = Rep_perm p1 \ Rep_perm p2" + unfolding plus_perm_def + by (simp add: Abs_perm_inverse perm_comp Rep_perm) + +lemma Rep_perm_uminus: + "Rep_perm (- p) = inv (Rep_perm p)" + unfolding uminus_perm_def + by (simp add: Abs_perm_inverse perm_inv Rep_perm) + +instance +apply default +unfolding Rep_perm_inject [symmetric] +unfolding minus_perm_def +unfolding Rep_perm_add +unfolding Rep_perm_uminus +unfolding Rep_perm_0 +by (simp_all add: o_assoc inv_o_cancel [OF bij_is_inj [OF bij_Rep_perm]]) + +end + + +section {* Implementation of swappings *} + +definition + swap :: "atom \ atom \ perm" ("'(_ \ _')") +where + "(a \ b) = + Abs_perm (if sort_of a = sort_of b + then (\c. if a = c then b else if b = c then a else c) + else id)" + +lemma Rep_perm_swap: + "Rep_perm (a \ b) = + (if sort_of a = sort_of b + then (\c. if a = c then b else if b = c then a else c) + else id)" +unfolding swap_def +apply (rule Abs_perm_inverse) +apply (rule permI) +apply (auto simp add: bij_def inj_on_def surj_def)[1] +apply (rule MOST_rev_mp [OF MOST_neq(1) [of a]]) +apply (rule MOST_rev_mp [OF MOST_neq(1) [of b]]) +apply (simp) +apply (simp) +done + +lemmas Rep_perm_simps = + Rep_perm_0 + Rep_perm_add + Rep_perm_uminus + Rep_perm_swap + +lemma swap_different_sorts [simp]: + "sort_of a \ sort_of b \ (a \ b) = 0" + by (rule Rep_perm_ext) (simp add: Rep_perm_simps) + +lemma swap_cancel: + "(a \ b) + (a \ b) = 0" +by (rule Rep_perm_ext) + (simp add: Rep_perm_simps expand_fun_eq) + +lemma swap_self [simp]: + "(a \ a) = 0" + by (rule Rep_perm_ext, simp add: Rep_perm_simps expand_fun_eq) + +lemma minus_swap [simp]: + "- (a \ b) = (a \ b)" + by (rule minus_unique [OF swap_cancel]) + +lemma swap_commute: + "(a \ b) = (b \ a)" + by (rule Rep_perm_ext) + (simp add: Rep_perm_swap expand_fun_eq) + +lemma swap_triple: + assumes "a \ b" and "c \ b" + assumes "sort_of a = sort_of b" "sort_of b = sort_of c" + shows "(a \ c) + (b \ c) + (a \ c) = (a \ b)" + using assms + by (rule_tac Rep_perm_ext) + (auto simp add: Rep_perm_simps expand_fun_eq) + + +section {* Permutation Types *} + +text {* + Infix syntax for @{text permute} has higher precedence than + addition, but lower than unary minus. +*} + +class pt = + fixes permute :: "perm \ 'a \ 'a" ("_ \ _" [76, 75] 75) + assumes permute_zero [simp]: "0 \ x = x" + assumes permute_plus [simp]: "(p + q) \ x = p \ (q \ x)" +begin + +lemma permute_diff [simp]: + shows "(p - q) \ x = p \ - q \ x" + unfolding diff_minus by simp + +lemma permute_minus_cancel [simp]: + shows "p \ - p \ x = x" + and "- p \ p \ x = x" + unfolding permute_plus [symmetric] by simp_all + +lemma permute_swap_cancel [simp]: + shows "(a \ b) \ (a \ b) \ x = x" + unfolding permute_plus [symmetric] + by (simp add: swap_cancel) + +lemma permute_swap_cancel2 [simp]: + shows "(a \ b) \ (b \ a) \ x = x" + unfolding permute_plus [symmetric] + by (simp add: swap_commute) + +lemma inj_permute [simp]: + shows "inj (permute p)" + by (rule inj_on_inverseI) + (rule permute_minus_cancel) + +lemma surj_permute [simp]: + shows "surj (permute p)" + by (rule surjI, rule permute_minus_cancel) + +lemma bij_permute [simp]: + shows "bij (permute p)" + by (rule bijI [OF inj_permute surj_permute]) + +lemma inv_permute: + shows "inv (permute p) = permute (- p)" + by (rule inv_equality) (simp_all) + +lemma permute_minus: + shows "permute (- p) = inv (permute p)" + by (simp add: inv_permute) + +lemma permute_eq_iff [simp]: + shows "p \ x = p \ y \ x = y" + by (rule inj_permute [THEN inj_eq]) + +end + +subsection {* Permutations for atoms *} + +instantiation atom :: pt +begin + +definition + "p \ a = Rep_perm p a" + +instance +apply(default) +apply(simp_all add: permute_atom_def Rep_perm_simps) +done + +end + +lemma sort_of_permute [simp]: + shows "sort_of (p \ a) = sort_of a" + unfolding permute_atom_def by (rule sort_of_Rep_perm) + +lemma swap_atom: + shows "(a \ b) \ c = + (if sort_of a = sort_of b + then (if c = a then b else if c = b then a else c) else c)" + unfolding permute_atom_def + by (simp add: Rep_perm_swap) + +lemma swap_atom_simps [simp]: + "sort_of a = sort_of b \ (a \ b) \ a = b" + "sort_of a = sort_of b \ (a \ b) \ b = a" + "c \ a \ c \ b \ (a \ b) \ c = c" + unfolding swap_atom by simp_all + +lemma expand_perm_eq: + fixes p q :: "perm" + shows "p = q \ (\a::atom. p \ a = q \ a)" + unfolding permute_atom_def + by (metis Rep_perm_ext ext) + + +subsection {* Permutations for permutations *} + +instantiation perm :: pt +begin + +definition + "p \ q = p + q - p" + +instance +apply default +apply (simp add: permute_perm_def) +apply (simp add: permute_perm_def diff_minus minus_add add_assoc) +done + +end + +lemma permute_self: "p \ p = p" +unfolding permute_perm_def by (simp add: diff_minus add_assoc) + +lemma permute_eqvt: + shows "p \ (q \ x) = (p \ q) \ (p \ x)" + unfolding permute_perm_def by simp + +lemma zero_perm_eqvt: + shows "p \ (0::perm) = 0" + unfolding permute_perm_def by simp + +lemma add_perm_eqvt: + fixes p p1 p2 :: perm + shows "p \ (p1 + p2) = p \ p1 + p \ p2" + unfolding permute_perm_def + by (simp add: expand_perm_eq) + +lemma swap_eqvt: + shows "p \ (a \ b) = (p \ a \ p \ b)" + unfolding permute_perm_def + by (auto simp add: swap_atom expand_perm_eq) + + +subsection {* Permutations for functions *} + +instantiation "fun" :: (pt, pt) pt +begin + +definition + "p \ f = (\x. p \ (f (- p \ x)))" + +instance +apply default +apply (simp add: permute_fun_def) +apply (simp add: permute_fun_def minus_add) +done + +end + +lemma permute_fun_app_eq: + shows "p \ (f x) = (p \ f) (p \ x)" +unfolding permute_fun_def by simp + + +subsection {* Permutations for booleans *} + +instantiation bool :: pt +begin + +definition "p \ (b::bool) = b" + +instance +apply(default) +apply(simp_all add: permute_bool_def) +done + +end + +lemma Not_eqvt: + shows "p \ (\ A) = (\ (p \ A))" +by (simp add: permute_bool_def) + + +subsection {* Permutations for sets *} + +lemma permute_set_eq: + fixes x::"'a::pt" + and p::"perm" + shows "(p \ X) = {p \ x | x. x \ X}" + apply(auto simp add: permute_fun_def permute_bool_def mem_def) + apply(rule_tac x="- p \ x" in exI) + apply(simp) + done + +lemma permute_set_eq_image: + shows "p \ X = permute p ` X" +unfolding permute_set_eq by auto + +lemma permute_set_eq_vimage: + shows "p \ X = permute (- p) -` X" +unfolding permute_fun_def permute_bool_def +unfolding vimage_def Collect_def mem_def .. + +subsection {* Permutations for units *} + +instantiation unit :: pt +begin + +definition "p \ (u::unit) = u" + +instance proof +qed (simp_all add: permute_unit_def) + +end + + +subsection {* Permutations for products *} + +instantiation "*" :: (pt, pt) pt +begin + +primrec + permute_prod +where + Pair_eqvt: "p \ (x, y) = (p \ x, p \ y)" + +instance +by default auto + +end + + +subsection {* Permutations for sums *} + +instantiation "+" :: (pt, pt) pt +begin + +primrec + permute_sum +where + "p \ (Inl x) = Inl (p \ x)" +| "p \ (Inr y) = Inr (p \ y)" + +instance proof +qed (case_tac [!] x, simp_all) + +end + +subsection {* Permutations for lists *} + +instantiation list :: (pt) pt +begin + +primrec + permute_list +where + "p \ [] = []" +| "p \ (x # xs) = p \ x # p \ xs" + +instance proof +qed (induct_tac [!] x, simp_all) + +end + +subsection {* Permutations for options *} + +instantiation option :: (pt) pt +begin + +primrec + permute_option +where + "p \ None = None" +| "p \ (Some x) = Some (p \ x)" + +instance proof +qed (induct_tac [!] x, simp_all) + +end + +subsection {* Permutations for @{typ char}, @{typ nat}, and @{typ int} *} + +instantiation char :: pt +begin + +definition "p \ (c::char) = c" + +instance proof +qed (simp_all add: permute_char_def) + +end + +instantiation nat :: pt +begin + +definition "p \ (n::nat) = n" + +instance proof +qed (simp_all add: permute_nat_def) + +end + +instantiation int :: pt +begin + +definition "p \ (i::int) = i" + +instance proof +qed (simp_all add: permute_int_def) + +end + + +section {* Pure types *} + +text {* Pure types will have always empty support. *} + +class pure = pt + + assumes permute_pure: "p \ x = x" + +text {* Types @{typ unit} and @{typ bool} are pure. *} + +instance unit :: pure +proof qed (rule permute_unit_def) + +instance bool :: pure +proof qed (rule permute_bool_def) + +text {* Other type constructors preserve purity. *} + +instance "fun" :: (pure, pure) pure +by default (simp add: permute_fun_def permute_pure) + +instance "*" :: (pure, pure) pure +by default (induct_tac x, simp add: permute_pure) + +instance "+" :: (pure, pure) pure +by default (induct_tac x, simp_all add: permute_pure) + +instance list :: (pure) pure +by default (induct_tac x, simp_all add: permute_pure) + +instance option :: (pure) pure +by default (induct_tac x, simp_all add: permute_pure) + + +subsection {* Types @{typ char}, @{typ nat}, and @{typ int} *} + +instance char :: pure +proof qed (rule permute_char_def) + +instance nat :: pure +proof qed (rule permute_nat_def) + +instance int :: pure +proof qed (rule permute_int_def) + + +subsection {* Supp, Freshness and Supports *} + +context pt +begin + +definition + supp :: "'a \ atom set" +where + "supp x = {a. infinite {b. (a \ b) \ x \ x}}" + +end + +definition + fresh :: "atom \ 'a::pt \ bool" ("_ \ _" [55, 55] 55) +where + "a \ x \ a \ supp x" + +lemma supp_conv_fresh: + shows "supp x = {a. \ a \ x}" + unfolding fresh_def by simp + +lemma swap_rel_trans: + assumes "sort_of a = sort_of b" + assumes "sort_of b = sort_of c" + assumes "(a \ c) \ x = x" + assumes "(b \ c) \ x = x" + shows "(a \ b) \ x = x" +proof (cases) + assume "a = b \ c = b" + with assms show "(a \ b) \ x = x" by auto +next + assume *: "\ (a = b \ c = b)" + have "((a \ c) + (b \ c) + (a \ c)) \ x = x" + using assms by simp + also have "(a \ c) + (b \ c) + (a \ c) = (a \ b)" + using assms * by (simp add: swap_triple) + finally show "(a \ b) \ x = x" . +qed + +lemma swap_fresh_fresh: + assumes a: "a \ x" + and b: "b \ x" + shows "(a \ b) \ x = x" +proof (cases) + assume asm: "sort_of a = sort_of b" + have "finite {c. (a \ c) \ x \ x}" "finite {c. (b \ c) \ x \ x}" + using a b unfolding fresh_def supp_def by simp_all + then have "finite ({c. (a \ c) \ x \ x} \ {c. (b \ c) \ x \ x})" by simp + then obtain c + where "(a \ c) \ x = x" "(b \ c) \ x = x" "sort_of c = sort_of b" + by (rule obtain_atom) (auto) + then show "(a \ b) \ x = x" using asm by (rule_tac swap_rel_trans) (simp_all) +next + assume "sort_of a \ sort_of b" + then show "(a \ b) \ x = x" by simp +qed + + +subsection {* supp and fresh are equivariant *} + +lemma finite_Collect_bij: + assumes a: "bij f" + shows "finite {x. P (f x)} = finite {x. P x}" +by (metis a finite_vimage_iff vimage_Collect_eq) + +lemma fresh_permute_iff: + shows "(p \ a) \ (p \ x) \ a \ x" +proof - + have "(p \ a) \ (p \ x) \ finite {b. (p \ a \ b) \ p \ x \ p \ x}" + unfolding fresh_def supp_def by simp + also have "\ \ finite {b. (p \ a \ p \ b) \ p \ x \ p \ x}" + using bij_permute by (rule finite_Collect_bij [symmetric]) + also have "\ \ finite {b. p \ (a \ b) \ x \ p \ x}" + by (simp only: permute_eqvt [of p] swap_eqvt) + also have "\ \ finite {b. (a \ b) \ x \ x}" + by (simp only: permute_eq_iff) + also have "\ \ a \ x" + unfolding fresh_def supp_def by simp + finally show ?thesis . +qed + +lemma fresh_eqvt: + shows "p \ (a \ x) = (p \ a) \ (p \ x)" + by (simp add: permute_bool_def fresh_permute_iff) + +lemma supp_eqvt: + fixes p :: "perm" + and x :: "'a::pt" + shows "p \ (supp x) = supp (p \ x)" + unfolding supp_conv_fresh + unfolding permute_fun_def Collect_def + by (simp add: Not_eqvt fresh_eqvt) + +subsection {* supports *} + +definition + supports :: "atom set \ 'a::pt \ bool" (infixl "supports" 80) +where + "S supports x \ \a b. (a \ S \ b \ S \ (a \ b) \ x = x)" + +lemma supp_is_subset: + fixes S :: "atom set" + and x :: "'a::pt" + assumes a1: "S supports x" + and a2: "finite S" + shows "(supp x) \ S" +proof (rule ccontr) + assume "\(supp x \ S)" + then obtain a where b1: "a \ supp x" and b2: "a \ S" by auto + from a1 b2 have "\b. b \ S \ (a \ b) \ x = x" by (unfold supports_def) (auto) + hence "{b. (a \ b) \ x \ x} \ S" by auto + with a2 have "finite {b. (a \ b)\x \ x}" by (simp add: finite_subset) + then have "a \ (supp x)" unfolding supp_def by simp + with b1 show False by simp +qed + +lemma supports_finite: + fixes S :: "atom set" + and x :: "'a::pt" + assumes a1: "S supports x" + and a2: "finite S" + shows "finite (supp x)" +proof - + have "(supp x) \ S" using a1 a2 by (rule supp_is_subset) + then show "finite (supp x)" using a2 by (simp add: finite_subset) +qed + +lemma supp_supports: + fixes x :: "'a::pt" + shows "(supp x) supports x" +proof (unfold supports_def, intro strip) + fix a b + assume "a \ (supp x) \ b \ (supp x)" + then have "a \ x" and "b \ x" by (simp_all add: fresh_def) + then show "(a \ b) \ x = x" by (rule swap_fresh_fresh) +qed + +lemma supp_is_least_supports: + fixes S :: "atom set" + and x :: "'a::pt" + assumes a1: "S supports x" + and a2: "finite S" + and a3: "\S'. finite S' \ (S' supports x) \ S \ S'" + shows "(supp x) = S" +proof (rule equalityI) + show "(supp x) \ S" using a1 a2 by (rule supp_is_subset) + with a2 have fin: "finite (supp x)" by (rule rev_finite_subset) + have "(supp x) supports x" by (rule supp_supports) + with fin a3 show "S \ supp x" by blast +qed + +lemma subsetCI: + shows "(\x. x \ A \ x \ B \ False) \ A \ B" + by auto + +lemma finite_supp_unique: + assumes a1: "S supports x" + assumes a2: "finite S" + assumes a3: "\a b. \a \ S; b \ S; sort_of a = sort_of b\ \ (a \ b) \ x \ x" + shows "(supp x) = S" + using a1 a2 +proof (rule supp_is_least_supports) + fix S' + assume "finite S'" and "S' supports x" + show "S \ S'" + proof (rule subsetCI) + fix a + assume "a \ S" and "a \ S'" + have "finite (S \ S')" + using `finite S` `finite S'` by simp + then obtain b where "b \ S \ S'" and "sort_of b = sort_of a" + by (rule obtain_atom) + then have "b \ S" and "b \ S'" and "sort_of a = sort_of b" + by simp_all + then have "(a \ b) \ x = x" + using `a \ S'` `S' supports x` by (simp add: supports_def) + moreover have "(a \ b) \ x \ x" + using `a \ S` `b \ S` `sort_of a = sort_of b` + by (rule a3) + ultimately show "False" by simp + qed +qed + +section {* Finitely-supported types *} + +class fs = pt + + assumes finite_supp: "finite (supp x)" + +lemma pure_supp: + shows "supp (x::'a::pure) = {}" + unfolding supp_def by (simp add: permute_pure) + +lemma pure_fresh: + fixes x::"'a::pure" + shows "a \ x" + unfolding fresh_def by (simp add: pure_supp) + +instance pure < fs +by default (simp add: pure_supp) + + +subsection {* Type @{typ atom} is finitely-supported. *} + +lemma supp_atom: + shows "supp a = {a}" +apply (rule finite_supp_unique) +apply (clarsimp simp add: supports_def) +apply simp +apply simp +done + +lemma fresh_atom: + shows "a \ b \ a \ b" + unfolding fresh_def supp_atom by simp + +instance atom :: fs +by default (simp add: supp_atom) + + +section {* Type @{typ perm} is finitely-supported. *} + +lemma perm_swap_eq: + shows "(a \ b) \ p = p \ (p \ (a \ b)) = (a \ b)" +unfolding permute_perm_def +by (metis add_diff_cancel minus_perm_def) + +lemma supports_perm: + shows "{a. p \ a \ a} supports p" + unfolding supports_def + by (simp add: perm_swap_eq swap_eqvt) + +lemma finite_perm_lemma: + shows "finite {a::atom. p \ a \ a}" + using finite_Rep_perm [of p] + unfolding permute_atom_def . + +lemma supp_perm: + shows "supp p = {a. p \ a \ a}" +apply (rule finite_supp_unique) +apply (rule supports_perm) +apply (rule finite_perm_lemma) +apply (simp add: perm_swap_eq swap_eqvt) +apply (auto simp add: expand_perm_eq swap_atom) +done + +lemma fresh_perm: + shows "a \ p \ p \ a = a" +unfolding fresh_def by (simp add: supp_perm) + +lemma supp_swap: + shows "supp (a \ b) = (if a = b \ sort_of a \ sort_of b then {} else {a, b})" + by (auto simp add: supp_perm swap_atom) + +lemma fresh_zero_perm: + shows "a \ (0::perm)" + unfolding fresh_perm by simp + +lemma supp_zero_perm: + shows "supp (0::perm) = {}" + unfolding supp_perm by simp + +lemma supp_plus_perm: + fixes p q::perm + shows "supp (p + q) \ supp p \ supp q" + by (auto simp add: supp_perm) + +lemma supp_minus_perm: + fixes p::perm + shows "supp (- p) = supp p" + apply(auto simp add: supp_perm) + apply(metis permute_minus_cancel)+ + done + +instance perm :: fs +by default (simp add: supp_perm finite_perm_lemma) + + +section {* Finite Support instances for other types *} + +subsection {* Type @{typ "'a \ 'b"} is finitely-supported. *} + +lemma supp_Pair: + shows "supp (x, y) = supp x \ supp y" + by (simp add: supp_def Collect_imp_eq Collect_neg_eq) + +lemma fresh_Pair: + shows "a \ (x, y) \ a \ x \ a \ y" + by (simp add: fresh_def supp_Pair) + +instance "*" :: (fs, fs) fs +apply default +apply (induct_tac x) +apply (simp add: supp_Pair finite_supp) +done + + +subsection {* Type @{typ "'a + 'b"} is finitely supported *} + +lemma supp_Inl: + shows "supp (Inl x) = supp x" + by (simp add: supp_def) + +lemma supp_Inr: + shows "supp (Inr x) = supp x" + by (simp add: supp_def) + +lemma fresh_Inl: + shows "a \ Inl x \ a \ x" + by (simp add: fresh_def supp_Inl) + +lemma fresh_Inr: + shows "a \ Inr y \ a \ y" + by (simp add: fresh_def supp_Inr) + +instance "+" :: (fs, fs) fs +apply default +apply (induct_tac x) +apply (simp_all add: supp_Inl supp_Inr finite_supp) +done + +subsection {* Type @{typ "'a option"} is finitely supported *} + +lemma supp_None: + shows "supp None = {}" +by (simp add: supp_def) + +lemma supp_Some: + shows "supp (Some x) = supp x" + by (simp add: supp_def) + +lemma fresh_None: + shows "a \ None" + by (simp add: fresh_def supp_None) + +lemma fresh_Some: + shows "a \ Some x \ a \ x" + by (simp add: fresh_def supp_Some) + +instance option :: (fs) fs +apply default +apply (induct_tac x) +apply (simp_all add: supp_None supp_Some finite_supp) +done + +subsubsection {* Type @{typ "'a list"} is finitely supported *} + +lemma supp_Nil: + shows "supp [] = {}" + by (simp add: supp_def) + +lemma supp_Cons: + shows "supp (x # xs) = supp x \ supp xs" +by (simp add: supp_def Collect_imp_eq Collect_neg_eq) + +lemma fresh_Nil: + shows "a \ []" + by (simp add: fresh_def supp_Nil) + +lemma fresh_Cons: + shows "a \ (x # xs) \ a \ x \ a \ xs" + by (simp add: fresh_def supp_Cons) + +instance list :: (fs) fs +apply default +apply (induct_tac x) +apply (simp_all add: supp_Nil supp_Cons finite_supp) +done + +end