diff -r a4743b7cd887 -r f65564bcf342 Nominal/Fv.thy --- a/Nominal/Fv.thy Sat Mar 20 16:27:51 2010 +0100 +++ b/Nominal/Fv.thy Sat Mar 20 18:16:26 2010 +0100 @@ -655,7 +655,7 @@ *} ML {* -fun build_alpha_refl_gl alphas (x, y, z) = +fun build_alpha_sym_trans_gl alphas (x, y, z) = let fun build_alpha alpha = let @@ -668,26 +668,84 @@ HOLogic.mk_all (z, ty, HOLogic.mk_imp (alpha $ var2 $ var3, alpha $ var $ var3))) in - ((alpha $ var $ var), (symp, transp)) + (symp, transp) end; - val (refl_eqs, eqs) = split_list (map build_alpha alphas) + val eqs = map build_alpha alphas val (sym_eqs, trans_eqs) = split_list eqs fun conj l = @{term Trueprop} $ foldr1 HOLogic.mk_conj l in - (conj refl_eqs, (conj sym_eqs, conj trans_eqs)) + (conj sym_eqs, conj trans_eqs) +end +*} + +ML {* +fun build_alpha_refl_gl fv_alphas_lst = +let + val (fvs_alphas, ls) = split_list fv_alphas_lst; + val (_, alpha_ts) = split_list fvs_alphas; + val tys = map (domain_type o fastype_of) alpha_ts; + val names = Datatype_Prop.make_tnames tys; + val args = map Free (names ~~ tys); + fun mk_alpha_refl arg (_, alpha) = alpha $ arg $ arg; + fun refl_eq_arg ((alpha, arg), l) = + foldr1 HOLogic.mk_conj + ((alpha $ arg $ arg) :: + (map (mk_alpha_refl arg) l)) + val eqs = map refl_eq_arg ((alpha_ts ~~ args) ~~ ls) +in + (names, HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj eqs)) end *} ML {* -fun reflp_tac induct inj ctxt = +fun reflp_tac induct eq_iff ctxt = rtac induct THEN_ALL_NEW - simp_tac ((mk_minimal_ss ctxt) addsimps inj) THEN_ALL_NEW + simp_tac ((mk_minimal_ss ctxt) addsimps eq_iff) THEN_ALL_NEW split_conjs THEN_ALL_NEW REPEAT o rtac @{thm exI[of _ "0 :: perm"]} THEN_ALL_NEW split_conjs THEN_ALL_NEW asm_full_simp_tac (HOL_ss addsimps @{thms alpha_gen fresh_star_def fresh_zero_perm permute_zero ball_triv add_0_left supp_zero_perm Int_empty_left split_conv}) *} +ML {* +fun build_alpha_refl fv_alphas_lst induct eq_iff ctxt = +let + val (names, gl) = build_alpha_refl_gl fv_alphas_lst; + val refl_conj = Goal.prove ctxt names [] gl (fn _ => reflp_tac induct eq_iff ctxt 1); +in + HOLogic.conj_elims refl_conj +end +*} + +ML {* +fun build_alpha_alphabn fv_alphas_lst inducts eq_iff ctxt = +let + val (fvs_alphas, ls) = split_list fv_alphas_lst; + val (_, alpha_ts) = split_list fvs_alphas; + val tys = map (domain_type o fastype_of) alpha_ts; + val names = Datatype_Prop.make_tnames tys; + val names2 = Name.variant_list names names; + val args = map Free (names ~~ tys); + val args2 = map Free (names2 ~~ tys); + fun alpha_alphabn ((alpha, (arg, arg2)), (no, l)) = + if l = [] then [] else + let + val alpha_bns = map snd l; + val lhs = alpha $ arg $ arg2; + val rhs = foldr1 HOLogic.mk_conj (map (fn x => x $ arg $ arg2) alpha_bns); + val gl = Logic.mk_implies (HOLogic.mk_Trueprop lhs, HOLogic.mk_Trueprop rhs); + fun tac _ = (etac (nth inducts no) THEN_ALL_NEW TRY o rtac @{thm TrueI} + THEN_ALL_NEW asm_full_simp_tac (HOL_ss addsimps eq_iff)) 1 + val th = Goal.prove ctxt (names @ names2) [] gl tac; + in + Project_Rule.projects ctxt (1 upto length l) th + end; + val eqs = map alpha_alphabn ((alpha_ts ~~ (args ~~ args2)) ~~ ((0 upto (length ls - 1)) ~~ ls)); +in + flat eqs +end +*} + lemma exi_neg: "\(pi :: perm). P pi \ (\(p :: perm). P p \ Q (- p)) \ \pi. Q pi" apply (erule exE) @@ -787,25 +845,22 @@ *} ML {* -fun build_equivps alphas term_induct alpha_induct term_inj alpha_inj distinct cases eqvt ctxt = +fun build_equivps alphas reflps alpha_induct term_inj alpha_inj distinct cases eqvt ctxt = let val ([x, y, z], ctxt') = Variable.variant_fixes ["x","y","z"] ctxt; - val (reflg, (symg, transg)) = build_alpha_refl_gl alphas (x, y, z) - fun reflp_tac' _ = reflp_tac term_induct alpha_inj ctxt 1; + val (symg, transg) = build_alpha_sym_trans_gl alphas (x, y, z) fun symp_tac' _ = symp_tac alpha_induct alpha_inj eqvt ctxt 1; fun transp_tac' _ = transp_tac ctxt alpha_induct alpha_inj term_inj distinct cases eqvt 1; - val reflt = Goal.prove ctxt' [] [] reflg reflp_tac'; - val symt = Goal.prove ctxt' [] [] symg symp_tac'; - val transt = Goal.prove ctxt' [] [] transg transp_tac'; - val [refltg, symtg, transtg] = Variable.export ctxt' ctxt [reflt, symt, transt] - val reflts = HOLogic.conj_elims refltg - val symts = HOLogic.conj_elims symtg - val transts = HOLogic.conj_elims transtg + val symp_loc = Goal.prove ctxt' [] [] symg symp_tac'; + val transp_loc = Goal.prove ctxt' [] [] transg transp_tac'; + val [symp, transp] = Variable.export ctxt' ctxt [symp_loc, transp_loc] + val symps = HOLogic.conj_elims symp + val transps = HOLogic.conj_elims transp fun equivp alpha = let val equivp = Const (@{const_name equivp}, fastype_of alpha --> @{typ bool}) val goal = @{term Trueprop} $ (equivp $ alpha) - fun tac _ = equivp_tac reflts symts transts 1 + fun tac _ = equivp_tac reflps symps transps 1 in Goal.prove ctxt [] [] goal tac end