diff -r a190b2b79cc8 -r f6275afb868a Nominal/Ex/Multi_Recs.thy --- a/Nominal/Ex/Multi_Recs.thy Mon Dec 05 15:34:12 2011 +0000 +++ b/Nominal/Ex/Multi_Recs.thy Mon Dec 05 16:12:44 2011 +0000 @@ -49,51 +49,6 @@ thm multi_recs.perm_bn_simps thm multi_recs.bn_finite - -lemma at_set_avoiding5: - assumes "finite xs" - and "finite (supp c)" - shows "\p. (p \ xs) \* c \ supp p = xs \ p \ xs" -using assms -apply(erule_tac c="c" in at_set_avoiding) -apply(auto) -done - -lemma - fixes c::"'a::fs" - assumes a: "\lrbs exp. \bs lrbs \* c; y = LetRec lrbs exp\ \ P" - shows "y = LetRec lrbs exp \ P" -apply - -apply(subgoal_tac "\p. ((p \ (bs lrbs)) \* (c, bs lrbs, lrbs, exp))") -apply(erule exE) -apply(simp add: fresh_star_Pair) -apply(erule conjE)+ -apply(simp add: multi_recs.fv_bn_eqvt) -using Abs_rename_set' -apply - -apply(drule_tac x="p" in meta_spec) -apply(drule_tac x="bs lrbs" in meta_spec) -apply(drule_tac x="(lrbs, exp)" in meta_spec) -apply(drule meta_mp) -apply(simp add: multi_recs.fv_bn_eqvt fresh_star_Pair) -apply(drule meta_mp) -apply(simp add: multi_recs.bn_finite) -apply(erule exE) -apply(erule conjE) -apply(rotate_tac 6) -apply(drule sym) -apply(simp add: multi_recs.fv_bn_eqvt) -apply(rule a) -apply(assumption) -apply(clarify) -apply(simp (no_asm) only: multi_recs.eq_iff) -apply(rule at_set_avoiding1) -apply(simp add: multi_recs.bn_finite) -apply(simp add: supp_Pair finite_supp) -apply(rule finite_sets_supp) -apply(simp add: multi_recs.bn_finite) -done - end