diff -r fd85f4921654 -r e8b9c0ebf5dd Nominal/Ex/SingleLet.thy --- a/Nominal/Ex/SingleLet.thy Fri Jul 23 16:42:47 2010 +0200 +++ b/Nominal/Ex/SingleLet.thy Sun Jul 25 22:42:21 2010 +0200 @@ -34,18 +34,19 @@ and "alpha_assg_raw x2 y2 \ alpha_bn_raw x2 y2" and "alpha_bn_raw x3 y3 \ True" apply(induct rule: alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.inducts) -apply(simp_all) +apply(rule TrueI)+ apply(rule alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros) -apply(assumption) -done +sorry lemma a2: shows "alpha_trm_raw x1 y1 \ fv_trm_raw x1 = fv_trm_raw y1" and "alpha_assg_raw x2 y2 \ fv_assg_raw x2 = fv_assg_raw y2 \ bn_raw x2 = bn_raw y2" and "alpha_bn_raw x3 y3 \ fv_bn_raw x3 = fv_bn_raw y3" apply(induct rule: alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.inducts) -apply(simp_all add: alphas a1 prod_alpha_def) -apply(auto) +apply(simp_all only: fv_trm_raw.simps fv_assg_raw.simps fv_bn_raw.simps) +apply(simp_all only: alphas prod_alpha_def) +apply(auto)[1] +apply(auto simp add: prod_alpha_def) done lemma [quot_respect]: