diff -r dae99175f584 -r dae038c8cd69 Quot/QuotBase.thy --- a/Quot/QuotBase.thy Mon Jan 25 18:13:44 2010 +0100 +++ b/Quot/QuotBase.thy Mon Jan 25 18:52:22 2010 +0100 @@ -49,11 +49,17 @@ shows "equivp R \ a = b \ R a b" by (simp add: equivp_reflp) +lemma identity_equivp: + shows "equivp (op =)" + unfolding equivp_def + by auto + + text {* Partial equivalences: not yet used anywhere *} definition "part_equivp E \ (\x. E x x) \ (\x y. E x y = (E x x \ E y y \ (E x = E y)))" -lemma equivp_IMP_part_equivp: +lemma equivp_implies_part_equivp: assumes a: "equivp E" shows "part_equivp E" using a @@ -66,6 +72,56 @@ where "r1 OOO r2 \ r1 OO r2 OO r1" +lemma eq_comp_r: "op = OO R OO op = \ R" + apply (rule eq_reflection) + apply (rule ext)+ + apply auto + done + +section {* Respects predicate *} + +definition + Respects +where + "Respects R x \ (R x x)" + +lemma in_respects: + shows "(x \ Respects R) = R x x" + unfolding mem_def Respects_def + by simp + +section {* Function map and function relation *} + +definition + fun_map (infixr "--->" 55) +where +[simp]: "fun_map f g h x = g (h (f x))" + +definition + fun_rel (infixr "===>" 55) +where +[simp]: "fun_rel E1 E2 f g = (\x y. E1 x y \ E2 (f x) (g y))" + + +lemma fun_map_id: + shows "(id ---> id) = id" + by (simp add: expand_fun_eq id_def) + +lemma fun_rel_eq: + shows "(op =) ===> (op =) \ (op =)" + by (rule eq_reflection) (simp add: expand_fun_eq) + +lemma fun_rel_id: + assumes a: "\x y. R1 x y \ R2 (f x) (g y)" + shows "(R1 ===> R2) f g" + using a by simp + +lemma fun_rel_id_asm: + assumes a: "\x y. R1 x y \ (A \ R2 (f x) (g y))" + shows "A \ (R1 ===> R2) f g" + using a by auto + + section {* Quotient Predicate *} definition @@ -125,39 +181,11 @@ using a unfolding Quotient_def transp_def by metis -section {* Lemmas about (op =) *} - -lemma identity_equivp: - shows "equivp (op =)" - unfolding equivp_def - by auto - lemma identity_quotient: shows "Quotient (op =) id id" unfolding Quotient_def id_def by blast -section {* Function map and function relation *} - -definition - fun_map (infixr "--->" 55) -where -[simp]: "fun_map f g h x = g (h (f x))" - -definition - fun_rel (infixr "===>" 55) -where -[simp]: "fun_rel E1 E2 f g = (\x y. E1 x y \ E2 (f x) (g y))" - - -lemma fun_map_id: - shows "(id ---> id) = id" - by (simp add: expand_fun_eq id_def) - -lemma fun_rel_eq: - shows "(op =) ===> (op =) \ (op =)" - by (rule eq_reflection) (simp add: expand_fun_eq) - lemma fun_quotient: assumes q1: "Quotient R1 abs1 rep1" and q2: "Quotient R2 abs2 rep2" @@ -192,16 +220,12 @@ unfolding Quotient_def by blast qed -section {* Respects predicate *} - -definition - Respects -where - "Respects R x \ (R x x)" - -lemma in_respects: - shows "(x \ Respects R) = R x x" - unfolding mem_def Respects_def by simp +lemma abs_o_rep: + assumes a: "Quotient R Abs Rep" + shows "Abs o Rep = id" + apply(rule ext) + apply(simp add: Quotient_abs_rep[OF a]) + done lemma equals_rsp: assumes q: "Quotient R Abs Rep" @@ -230,13 +254,15 @@ assumes q: "Quotient R Abs Rep" and a: "R x1 x2" shows "R x1 (Rep (Abs x2))" - using q a by (metis Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q]) +using a +by (metis Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q]) lemma rep_abs_rsp_left: assumes q: "Quotient R Abs Rep" and a: "R x1 x2" shows "R (Rep (Abs x1)) x2" -using q a by (metis Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q]) +using a +by (metis Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q]) (* In the following theorem R1 can be instantiated with anything, but we know some of the types of the Rep and Abs functions; @@ -255,7 +281,7 @@ shows "R2 (f x) (g y)" using a by simp -(* Set of lemmas for regularisation of ball and bex *) +section {* lemmas for regularisation of ball and bex *} lemma ball_reg_eqv: fixes P :: "'a \ bool" @@ -349,74 +375,13 @@ "((\y. \x. A x y) \ (\y. \x\P. B x y)) \ ((\x. \y. A x y) \ (\x\P. \y. B x y))" by auto -(* Bounded abstraction *) +section {* Bounded abstraction *} + definition Babs :: "('a \ bool) \ ('a \ 'b) \ 'a \ 'b" where "(x \ p) \ (Babs p m x = m x)" -definition - Bexeq :: "('a \ 'a \ bool) \ ('a \ bool) \ bool" -where - "Bexeq R P \ (\x \ Respects R. P x) \ (\x \ Respects R. \y \ Respects R. ((P x \ P y) \ (R x y)))" - -(* 3 lemmas needed for proving repabs_inj *) -lemma ball_rsp: - assumes a: "(R ===> (op =)) f g" - shows "Ball (Respects R) f = Ball (Respects R) g" - using a by (simp add: Ball_def in_respects) - -lemma bex_rsp: - assumes a: "(R ===> (op =)) f g" - shows "(Bex (Respects R) f = Bex (Respects R) g)" - using a by (simp add: Bex_def in_respects) - -lemma bex1_rsp: - assumes a: "(R ===> (op =)) f g" - shows "(Bex1 (Respects R) f = Bex1 (Respects R) g)" - using a -by (simp add: Ex1_def Bex1_def in_respects) auto - -(* TODO/FIXME: simplify the repetitions in this proof *) -lemma bexeq_rsp: -assumes a: "Quotient R absf repf" -shows "((R ===> op =) ===> op =) (Bexeq R) (Bexeq R)" -apply simp -unfolding Bexeq_def -apply rule -apply rule -apply rule -apply rule -apply (erule conjE)+ -apply (erule bexE) -apply rule -apply (rule_tac x="xa" in bexI) -apply metis -apply metis -apply rule+ -apply (erule_tac x="xb" in ballE) -prefer 2 -apply (metis) -apply (erule_tac x="ya" in ballE) -prefer 2 -apply (metis) -apply (metis in_respects) -apply (erule conjE)+ -apply (erule bexE) -apply rule -apply (rule_tac x="xa" in bexI) -apply metis -apply metis -apply rule+ -apply (erule_tac x="xb" in ballE) -prefer 2 -apply (metis) -apply (erule_tac x="ya" in ballE) -prefer 2 -apply (metis) -apply (metis in_respects) -done - lemma babs_rsp: assumes q: "Quotient R1 Abs1 Rep1" and a: "(R1 ===> R2) f g" @@ -458,6 +423,24 @@ shows "equivp R \ Babs (Respects R) P = P" by (simp add: expand_fun_eq Babs_def in_respects equivp_reflp) + +(* 3 lemmas needed for proving repabs_inj *) +lemma ball_rsp: + assumes a: "(R ===> (op =)) f g" + shows "Ball (Respects R) f = Ball (Respects R) g" + using a by (simp add: Ball_def in_respects) + +lemma bex_rsp: + assumes a: "(R ===> (op =)) f g" + shows "(Bex (Respects R) f = Bex (Respects R) g)" + using a by (simp add: Bex_def in_respects) + +lemma bex1_rsp: + assumes a: "(R ===> (op =)) f g" + shows "(Bex1 (Respects R) f = Bex1 (Respects R) g)" + using a +by (simp add: Ex1_def Bex1_def in_respects) auto + (* 3 lemmas needed for cleaning of quantifiers *) lemma all_prs: assumes a: "Quotient R absf repf" @@ -471,6 +454,53 @@ using a unfolding Quotient_def Bex_def in_respects fun_map_def id_apply by metis +section {* Bexeq quantifier *} + +definition + Bexeq :: "('a \ 'a \ bool) \ ('a \ bool) \ bool" +where + "Bexeq R P \ (\x \ Respects R. P x) \ (\x \ Respects R. \y \ Respects R. ((P x \ P y) \ (R x y)))" + +(* TODO/FIXME: simplify the repetitions in this proof *) +lemma bexeq_rsp: + assumes a: "Quotient R absf repf" + shows "((R ===> op =) ===> op =) (Bexeq R) (Bexeq R)" +apply simp +unfolding Bexeq_def +apply rule +apply rule +apply rule +apply rule +apply (erule conjE)+ +apply (erule bexE) +apply rule +apply (rule_tac x="xa" in bexI) +apply metis +apply metis +apply rule+ +apply (erule_tac x="xb" in ballE) +prefer 2 +apply (metis) +apply (erule_tac x="ya" in ballE) +prefer 2 +apply (metis) +apply (metis in_respects) +apply (erule conjE)+ +apply (erule bexE) +apply rule +apply (rule_tac x="xa" in bexI) +apply metis +apply metis +apply rule+ +apply (erule_tac x="xb" in ballE) +prefer 2 +apply (metis) +apply (erule_tac x="ya" in ballE) +prefer 2 +apply (metis) +apply (metis in_respects) +done + lemma ex1_prs: assumes a: "Quotient R absf repf" shows "((absf ---> id) ---> id) (Bexeq R) f = Ex1 f" @@ -508,15 +538,7 @@ apply metis done -lemma fun_rel_id: - assumes a: "\x y. R1 x y \ R2 (f x) (g y)" - shows "(R1 ===> R2) f g" - using a by simp - -lemma fun_rel_id_asm: - assumes a: "\x y. R1 x y \ (A \ R2 (f x) (g y))" - shows "A \ (R1 ===> R2) f g" - using a by auto +section {* Various respects and preserve lemmas *} lemma quot_rel_rsp: assumes a: "Quotient R Abs Rep" @@ -575,16 +597,15 @@ using apply_rsp[OF q1 a1] a2 by auto - - (******************************************) (* REST OF THE FILE IS UNUSED (until now) *) (******************************************) +text {* lemma in_fun: shows "x \ ((f ---> g) s) = g (f x \ s)" by (simp add: mem_def) - + lemma respects_thm: shows "Respects (R1 ===> R2) f = (\x y. R1 x y \ R2 (f x) (f y))" unfolding Respects_def @@ -612,19 +633,6 @@ using a b unfolding Respects_def by simp -lemma abs_o_rep: - assumes a: "Quotient r absf repf" - shows "absf o repf = id" - apply(rule ext) - apply(simp add: Quotient_abs_rep[OF a]) - done - -lemma eq_comp_r: "op = OO R OO op = \ R" - apply (rule eq_reflection) - apply (rule ext)+ - apply auto - done - lemma fun_rel_eq_rel: assumes q1: "Quotient R1 Abs1 Rep1" and q2: "Quotient R2 Abs2 Rep2" @@ -690,5 +698,7 @@ shows "R (id e1) (id e2)" using a by auto +*} + end