diff -r fb201e383f1b -r da575186d492 Slides/Slides1.thy --- a/Slides/Slides1.thy Tue Feb 19 05:38:46 2013 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1122 +0,0 @@ -(*<*) -theory Slides1 -imports "~~/src/HOL/Library/LaTeXsugar" "Nominal" -begin - -notation (latex output) - set ("_") and - Cons ("_::/_" [66,65] 65) - -(*>*) - - -text_raw {* - %%\renewcommand{\slidecaption}{Cambridge, 8.~June 2010} - \renewcommand{\slidecaption}{Uppsala, 3.~March 2011} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1>[t] - \frametitle{% - \begin{tabular}{@ {\hspace{-3mm}}c@ {}} - \\ - \huge Nominal Isabelle 2\\[-2mm] - \large Or, How to Reason Conveniently\\[-5mm] - \large with General Bindings\\[5mm] - \end{tabular}} - \begin{center} - Christian Urban - \end{center} - \begin{center} - joint work with {\bf Cezary Kaliszyk}\\[0mm] - \end{center} - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-2> - \frametitle{\begin{tabular}{c}Binding in Old Nominal\end{tabular}} - \mbox{}\\[-6mm] - - \begin{itemize} - \item the old Nominal Isabelle provided a reasoning infrastructure for single binders\medskip - - \begin{center} - Lam [a].(Var a) - \end{center}\bigskip - - \item<2-> but representing - - \begin{center} - $\forall\{a_1,\ldots,a_n\}.\; T$ - \end{center}\medskip - - with single binders and reasoning about it is a \alert{\bf major} pain; - take my word for it! - \end{itemize} - - \only<1>{ - \begin{textblock}{6}(1.5,11) - \small - for example\\ - \begin{tabular}{l@ {\hspace{2mm}}l} - & a $\fresh$ Lam [a]. t\\ - & Lam [a]. (Var a) \alert{$=$} Lam [b]. (Var b)\\ - & Barendregt-style reasoning about bound variables\\ - \end{tabular} - \end{textblock}} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-4> - \frametitle{\begin{tabular}{c}Binding Sets of Names\end{tabular}} - \mbox{}\\[-3mm] - - \begin{itemize} - \item binding sets of names has some interesting properties:\medskip - - \begin{center} - \begin{tabular}{l} - $\forall\{x, y\}.\, x \rightarrow y \;\;\approx_\alpha\;\; \forall\{y, x\}.\, y \rightarrow x$ - \bigskip\smallskip\\ - - \onslide<2->{% - $\forall\{x, y\}.\, x \rightarrow y \;\;\not\approx_\alpha\;\; \forall\{z\}.\, z \rightarrow z$ - }\bigskip\smallskip\\ - - \onslide<3->{% - $\forall\{x\}.\, x \rightarrow y \;\;\approx_\alpha\;\; \forall\{x, \alert{z}\}.\, x \rightarrow y$ - }\medskip\\ - \onslide<3->{\hspace{4cm}\small provided $z$ is fresh for the type} - \end{tabular} - \end{center} - \end{itemize} - - \begin{textblock}{8}(2,14.5) - \footnotesize $^*$ $x$, $y$, $z$ are assumed to be distinct - \end{textblock} - - \only<4>{ - \begin{textblock}{6}(2.5,4) - \begin{tikzpicture} - \draw (0,0) node[inner sep=3mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] - {\normalsize\color{darkgray} - \begin{minipage}{8cm}\raggedright - For type-schemes the order of bound names does not matter, and - alpha-equivalence is preserved under \alert{vacuous} binders. - \end{minipage}}; - \end{tikzpicture} - \end{textblock}} - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-3> - \frametitle{\begin{tabular}{c}Other Binding Modes\end{tabular}} - \mbox{}\\[-3mm] - - \begin{itemize} - \item alpha-equivalence being preserved under vacuous binders is \underline{not} always - wanted:\bigskip\bigskip\normalsize - - \begin{tabular}{@ {\hspace{-8mm}}l} - $\text{let}\;x = 3\;\text{and}\;y = 2\;\text{in}\;x - y\;\text{end}$\medskip\\ - \onslide<2->{$\;\;\;\only<2>{\approx_\alpha}\only<3>{\alert{\not\approx_\alpha}} - \text{let}\;y = 2\;\text{and}\;x = 3\only<3->{\alert{\;\text{and} - \;z = \text{loop}}}\;\text{in}\;x - y\;\text{end}$} - \end{tabular} - - - \end{itemize} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1> - \frametitle{\begin{tabular}{c}\LARGE{}Even Another Binding Mode\end{tabular}} - \mbox{}\\[-3mm] - - \begin{itemize} - \item sometimes one wants to abstract more than one name, but the order \underline{does} matter\bigskip - - \begin{center} - \begin{tabular}{@ {\hspace{-8mm}}l} - $\text{let}\;(x, y) = (3, 2)\;\text{in}\;x - y\;\text{end}$\medskip\\ - $\;\;\;\not\approx_\alpha - \text{let}\;(y, x) = (3, 2)\;\text{in}\;x - y\;\text{end}$ - \end{tabular} - \end{center} - - - \end{itemize} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-2> - \frametitle{\begin{tabular}{c}\LARGE{}Three Binding Modes\end{tabular}} - \mbox{}\\[-3mm] - - \begin{itemize} - \item the order does not matter and alpha-equivelence is preserved under - vacuous binders \textcolor{gray}{(restriction)}\medskip - - \item the order does not matter, but the cardinality of the binders - must be the same \textcolor{gray}{(abstraction)}\medskip - - \item the order does matter \textcolor{gray}{(iterated single binders)} - \end{itemize} - - \onslide<2->{ - \begin{center} - \isacommand{bind (set+)}\hspace{6mm} - \isacommand{bind (set)}\hspace{6mm} - \isacommand{bind} - \end{center}} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-3> - \frametitle{\begin{tabular}{c}Specification of Binding\end{tabular}} - \mbox{}\\[-6mm] - - \mbox{}\hspace{10mm} - \begin{tabular}{ll} - \multicolumn{2}{l}{\isacommand{nominal\_datatype} trm $=$}\\ - \hspace{5mm}\phantom{$|$} Var name\\ - \hspace{5mm}$|$ App trm trm\\ - \hspace{5mm}$|$ Lam \only<2->{x::}name \only<2->{t::}trm - & \onslide<2->{\isacommand{bind} x \isacommand{in} t}\\ - \hspace{5mm}$|$ Let \only<2->{as::}assn \only<2->{t::}trm - & \onslide<2->{\isacommand{bind} bn(as) \isacommand{in} t}\\ - \multicolumn{2}{l}{\isacommand{and} assn $=$}\\ - \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} ANil}\\ - \multicolumn{2}{l}{\hspace{5mm}$|$ ACons name trm assn}\\ - \multicolumn{2}{l}{\onslide<3->{\isacommand{binder} bn \isacommand{where}}}\\ - \multicolumn{2}{l}{\onslide<3->{\hspace{5mm}\phantom{$|$} bn(ANil) $=$ []}}\\ - \multicolumn{2}{l}{\onslide<3->{\hspace{5mm}$|$ bn(ACons a t as) $=$ [a] @ bn(as)}}\\ - \end{tabular} - - - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-5> - \frametitle{\begin{tabular}{c}Inspiration from Ott\end{tabular}} - \mbox{}\\[-3mm] - - \begin{itemize} - \item this way of specifying binding is inspired by - {\bf Ott}\onslide<2->{, \alert{\bf but} we made some adjustments:}\medskip - - - \only<2>{ - \begin{itemize} - \item Ott allows specifications like\smallskip - \begin{center} - $t ::= t\;t\; |\;\lambda x.t$ - \end{center} - \end{itemize}} - - \only<3-4>{ - \begin{itemize} - \item whether something is bound can depend in Ott on other bound things\smallskip - \begin{center} - \begin{tikzpicture} - \node (A) at (-0.5,1) {Foo $(\lambda y. \lambda x. t)$}; - \node (B) at ( 1.1,1) {$s$}; - \onslide<4>{\node (C) at (0.5,0) {$\{y, x\}$};} - \onslide<4>{\draw[->,red,line width=1mm] (A) -- (C);} - \onslide<4>{\draw[->,red,line width=1mm] (C) -- (B);} - \end{tikzpicture} - \end{center} - \onslide<4>{this might make sense for ``raw'' terms, but not at all - for $\alpha$-equated terms} - \end{itemize}} - - \only<5>{ - \begin{itemize} - \item we allow multiple ``binders'' and ``bodies''\smallskip - \begin{center} - \begin{tabular}{l} - \isacommand{bind} a b c \ldots \isacommand{in} x y z \ldots\\ - \isacommand{bind (set)} a b c \ldots \isacommand{in} x y z \ldots\\ - \isacommand{bind (set+)} a b c \ldots \isacommand{in} x y z \ldots - \end{tabular} - \end{center}\bigskip\medskip - the reason is that with our definition of $\alpha$-equivalence\medskip - \begin{center} - \begin{tabular}{l} - \isacommand{bind (set+)} as \isacommand{in} x y $\not\Leftrightarrow$\\ - \hspace{8mm}\isacommand{bind (set+)} as \isacommand{in} x, \isacommand{bind (set+)} as \isacommand{in} y - \end{tabular} - \end{center}\medskip - - same with \isacommand{bind (set)} - \end{itemize}} - \end{itemize} - - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1> - \frametitle{\begin{tabular}{c}Alpha-Equivalence\end{tabular}} - \mbox{}\\[-3mm] - - \begin{itemize} - \item in the old Nominal Isabelle, we represented single binders as partial functions:\bigskip - - \begin{center} - \begin{tabular}{l} - Lam [$a$].\,$t$ $\;{^\text{``}}\!\dn{}\!^{\text{''}}$\\[2mm] - \;\;\;\;$\lambda b.$\;$\text{if}\;a = b\;\text{then}\;t\;\text{else}$\\ - \phantom{\;\;\;\;$\lambda b.$\;\;\;\;\;\;}$\text{if}\;b \fresh t\; - \text{then}\;(a\;b)\act t\;\text{else}\;\text{error}$ - \end{tabular} - \end{center} - \end{itemize} - - \begin{textblock}{10}(2,14) - \footnotesize $^*$ alpha-equality coincides with equality on functions - \end{textblock} - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-> - \frametitle{\begin{tabular}{c}New Design\end{tabular}} - \mbox{}\\[4mm] - - \begin{center} - \begin{tikzpicture} - {\draw (0,0) node[inner sep=3mm, ultra thick, draw=fg, rounded corners=2mm] - (A) {\begin{minipage}{1.1cm}bind.\\spec.\end{minipage}};} - - {\draw (3,0) node[inner sep=3mm, ultra thick, draw=fg, rounded corners=2mm] - (B) {\begin{minipage}{1.1cm}raw\\terms\end{minipage}};} - - \alt<2> - {\draw (6,0) node[inner sep=3mm, ultra thick, draw=red, rounded corners=2mm] - (C) {\textcolor{red}{\begin{minipage}{1.1cm}$\alpha$-\\equiv.\end{minipage}}};} - {\draw (6,0) node[inner sep=3mm, ultra thick, draw=fg, rounded corners=2mm] - (C) {\begin{minipage}{1.1cm}$\alpha$-\\equiv.\end{minipage}};} - - {\draw (0,-3) node[inner sep=3mm, ultra thick, draw=fg, rounded corners=2mm] - (D) {\begin{minipage}{1.1cm}quot.\\type\end{minipage}};} - - {\draw (3,-3) node[inner sep=3mm, ultra thick, draw=fg, rounded corners=2mm] - (E) {\begin{minipage}{1.1cm}lift\\thms\end{minipage}};} - - {\draw (6,-3) node[inner sep=3mm, ultra thick, draw=fg, rounded corners=2mm] - (F) {\begin{minipage}{1.1cm}add.\\thms\end{minipage}};} - - \draw[->,fg!50,line width=1mm] (A) -- (B); - \draw[->,fg!50,line width=1mm] (B) -- (C); - \draw[->,fg!50,line width=1mm, line join=round, rounded corners=2mm] - (C) -- (8,0) -- (8,-1.5) -- (-2,-1.5) -- (-2,-3) -- (D); - \draw[->,fg!50,line width=1mm] (D) -- (E); - \draw[->,fg!50,line width=1mm] (E) -- (F); - \end{tikzpicture} - \end{center} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - - - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-8> - \frametitle{\begin{tabular}{c}Alpha-Equivalence\end{tabular}} - \mbox{}\\[-3mm] - - \begin{itemize} - \item lets first look at pairs\bigskip\medskip - - \begin{tabular}{@ {\hspace{1cm}}l} - $(as, x) \onslide<2->{\approx\!}\makebox[0mm][l]{\only<2-6>{${}_{\text{set}}$}% - \only<7>{${}_{\text{\alert{list}}}$}% - \only<8>{${}_{\text{\alert{set+}}}$}}% - \onslide<3->{^{R,\text{fv}}}\,\onslide<2->{(bs,y)}$ - \end{tabular}\bigskip - \end{itemize} - - \only<1>{ - \begin{textblock}{8}(3,8.5) - \begin{tabular}{l@ {\hspace{2mm}}p{8cm}} - & $as$ is a set of names\ldots the binders\\ - & $x$ is the body (might be a tuple)\\ - & $\approx_{\text{set}}$ is where the cardinality - of the binders has to be the same\\ - \end{tabular} - \end{textblock}} - - \only<4->{ - \begin{textblock}{12}(5,8) - \begin{tabular}{ll@ {\hspace{1mm}}l} - $\dn$ & \onslide<5->{$\exists \pi.\,$} & $\text{fv}(x) - as = \text{fv}(y) - bs$\\[1mm] - & \onslide<5->{$\;\;\;\wedge$} & \onslide<5->{$\text{fv}(x) - as \fresh^* \pi$}\\[1mm] - & \onslide<5->{$\;\;\;\wedge$} & \onslide<5->{$(\pi \act x)\;R\;y$}\\[1mm] - & \onslide<6-7>{$\;\;\;\wedge$} & \onslide<6-7>{$\pi \act as = bs$}\\ - \end{tabular} - \end{textblock}} - - \only<7>{ - \begin{textblock}{7}(3,13.8) - \footnotesize $^*$ $as$ and $bs$ are \alert{lists} of names - \end{textblock}} - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-3> - \frametitle{\begin{tabular}{c}Examples\end{tabular}} - \mbox{}\\[-3mm] - - \begin{itemize} - \item lets look at ``type-schemes'':\medskip\medskip - - \begin{center} - $(as, x) \approx\!\makebox[0mm][l]{${}_{\text{set}}$}\only<1>{{}^{R,\text{fv}}}\only<2->{{}^{\alert{=},\alert{\text{fv}}}} (bs, y)$ - \end{center}\medskip - - \onslide<2->{ - \begin{center} - \begin{tabular}{l} - $\text{fv}(x) = \{x\}$\\[1mm] - $\text{fv}(T_1 \rightarrow T_2) = \text{fv}(T_1) \cup \text{fv}(T_2)$\\ - \end{tabular} - \end{center}} - \end{itemize} - - - \only<3->{ - \begin{textblock}{4}(0.3,12) - \begin{tikzpicture} - \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] - {\tiny\color{darkgray} - \begin{minipage}{3.4cm}\raggedright - \begin{tabular}{r@ {\hspace{1mm}}l} - \multicolumn{2}{@ {}l}{set+:}\\ - $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ - $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ - $\wedge$ & $\pi \cdot x = y$\\ - \\ - \end{tabular} - \end{minipage}}; - \end{tikzpicture} - \end{textblock}} - \only<3->{ - \begin{textblock}{4}(5.2,12) - \begin{tikzpicture} - \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] - {\tiny\color{darkgray} - \begin{minipage}{3.4cm}\raggedright - \begin{tabular}{r@ {\hspace{1mm}}l} - \multicolumn{2}{@ {}l}{set:}\\ - $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ - $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ - $\wedge$ & $\pi \cdot x = y$\\ - $\wedge$ & $\pi \cdot as = bs$\\ - \end{tabular} - \end{minipage}}; - \end{tikzpicture} - \end{textblock}} - \only<3->{ - \begin{textblock}{4}(10.2,12) - \begin{tikzpicture} - \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] - {\tiny\color{darkgray} - \begin{minipage}{3.4cm}\raggedright - \begin{tabular}{r@ {\hspace{1mm}}l} - \multicolumn{2}{@ {}l}{list:}\\ - $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ - $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ - $\wedge$ & $\pi \cdot x = y$\\ - $\wedge$ & $\pi \cdot as = bs$\\ - \end{tabular} - \end{minipage}}; - \end{tikzpicture} - \end{textblock}} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-2> - \frametitle{\begin{tabular}{c}Examples\end{tabular}} - \mbox{}\\[-3mm] - - \begin{center} - \only<1>{$(\{x, y\}, x \rightarrow y) \approx_? (\{x, y\}, y \rightarrow x)$} - \only<2>{$([x, y], x \rightarrow y) \approx_? ([x, y], y \rightarrow x)$} - \end{center} - - \begin{itemize} - \item $\approx_{\text{set+}}$, $\approx_{\text{set}}$% - \only<2>{, \alert{$\not\approx_{\text{list}}$}} - \end{itemize} - - - \only<1->{ - \begin{textblock}{4}(0.3,12) - \begin{tikzpicture} - \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] - {\tiny\color{darkgray} - \begin{minipage}{3.4cm}\raggedright - \begin{tabular}{r@ {\hspace{1mm}}l} - \multicolumn{2}{@ {}l}{set+:}\\ - $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ - $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ - $\wedge$ & $\pi \cdot x = y$\\ - \\ - \end{tabular} - \end{minipage}}; - \end{tikzpicture} - \end{textblock}} - \only<1->{ - \begin{textblock}{4}(5.2,12) - \begin{tikzpicture} - \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] - {\tiny\color{darkgray} - \begin{minipage}{3.4cm}\raggedright - \begin{tabular}{r@ {\hspace{1mm}}l} - \multicolumn{2}{@ {}l}{set:}\\ - $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ - $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ - $\wedge$ & $\pi \cdot x = y$\\ - $\wedge$ & $\pi \cdot as = bs$\\ - \end{tabular} - \end{minipage}}; - \end{tikzpicture} - \end{textblock}} - \only<1->{ - \begin{textblock}{4}(10.2,12) - \begin{tikzpicture} - \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] - {\tiny\color{darkgray} - \begin{minipage}{3.4cm}\raggedright - \begin{tabular}{r@ {\hspace{1mm}}l} - \multicolumn{2}{@ {}l}{list:}\\ - $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ - $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ - $\wedge$ & $\pi \cdot x = y$\\ - $\wedge$ & $\pi \cdot as = bs$\\ - \end{tabular} - \end{minipage}}; - \end{tikzpicture} - \end{textblock}} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-2> - \frametitle{\begin{tabular}{c}Examples\end{tabular}} - \mbox{}\\[-3mm] - - \begin{center} - \only<1>{$(\{x\}, x) \approx_? (\{x, y\}, x)$} - \end{center} - - \begin{itemize} - \item $\approx_{\text{set+}}$, $\not\approx_{\text{set}}$, - $\not\approx_{\text{list}}$ - \end{itemize} - - - \only<1->{ - \begin{textblock}{4}(0.3,12) - \begin{tikzpicture} - \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] - {\tiny\color{darkgray} - \begin{minipage}{3.4cm}\raggedright - \begin{tabular}{r@ {\hspace{1mm}}l} - \multicolumn{2}{@ {}l}{set+:}\\ - $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ - $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ - $\wedge$ & $\pi \cdot x = y$\\ - \\ - \end{tabular} - \end{minipage}}; - \end{tikzpicture} - \end{textblock}} - \only<1->{ - \begin{textblock}{4}(5.2,12) - \begin{tikzpicture} - \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] - {\tiny\color{darkgray} - \begin{minipage}{3.4cm}\raggedright - \begin{tabular}{r@ {\hspace{1mm}}l} - \multicolumn{2}{@ {}l}{set:}\\ - $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ - $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ - $\wedge$ & $\pi \cdot x = y$\\ - $\wedge$ & $\pi \cdot as = bs$\\ - \end{tabular} - \end{minipage}}; - \end{tikzpicture} - \end{textblock}} - \only<1->{ - \begin{textblock}{4}(10.2,12) - \begin{tikzpicture} - \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] - {\tiny\color{darkgray} - \begin{minipage}{3.4cm}\raggedright - \begin{tabular}{r@ {\hspace{1mm}}l} - \multicolumn{2}{@ {}l}{list:}\\ - $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ - $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ - $\wedge$ & $\pi \cdot x = y$\\ - $\wedge$ & $\pi \cdot as = bs$\\ - \end{tabular} - \end{minipage}}; - \end{tikzpicture} - \end{textblock}} - - \only<2>{ - \begin{textblock}{6}(2.5,4) - \begin{tikzpicture} - \draw (0,0) node[inner sep=5mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] - {\normalsize - \begin{minipage}{8cm}\raggedright - \begin{itemize} - \item \color{darkgray}$\alpha$-equivalences coincide when a single name is - abstracted - \item \color{darkgray}in that case they are equivalent to ``old-fashioned'' definitions of $\alpha$ - \end{itemize} - \end{minipage}}; - \end{tikzpicture} - \end{textblock}} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-3> - \frametitle{\begin{tabular}{c}General Abstractions\end{tabular}} - \mbox{}\\[-7mm] - - \begin{itemize} - \item we take $(as, x) \approx\!\makebox[0mm][l]{${}_{{}*{}}$}^{=,\text{supp}} (bs, y)$\medskip - \item they are equivalence relations\medskip - \item we can therefore use the quotient package to introduce the - types $\beta\;\text{abs}_*$\bigskip - \begin{center} - \only<1>{$[as].\,x$} - \only<2>{$\text{supp}([as].x) = \text{supp}(x) - as$} - \only<3>{% - \begin{tabular}{r@ {\hspace{1mm}}l} - \multicolumn{2}{@ {\hspace{-7mm}}l}{$[as]. x \alert{=} [bs].y\;\;\;\text{if\!f}$}\\[2mm] - $\exists \pi.$ & $\text{supp}(x) - as = \text{supp}(y) - bs$\\ - $\wedge$ & $\text{supp}(x) - as \fresh^* \pi$\\ - $\wedge$ & $\pi \act x = y $\\ - $(\wedge$ & $\pi \act as = bs)\;^*$\\ - \end{tabular}} - \end{center} - \end{itemize} - - \only<1->{ - \begin{textblock}{8}(12,3.8) - \footnotesize $^*$ set, set+, list - \end{textblock}} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1> - \frametitle{\begin{tabular}{c}A Problem\end{tabular}} - \mbox{}\\[-3mm] - - \begin{center} - $\text{let}\;x_1=t_1 \ldots x_n=t_n\;\text{in}\;s$ - \end{center} - - \begin{itemize} - \item we cannot represent this as\medskip - \begin{center} - $\text{let}\;[x_1,\ldots,x_n]\alert{.}s\;\;[t_1,\ldots,t_n]$ - \end{center}\bigskip - - because\medskip - \begin{center} - $\text{let}\;[x].s\;\;[t_1,t_2]$ - \end{center} - \end{itemize} - - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-> - \frametitle{\begin{tabular}{c}Our Specifications\end{tabular}} - \mbox{}\\[-6mm] - - \mbox{}\hspace{10mm} - \begin{tabular}{ll} - \multicolumn{2}{l}{\isacommand{nominal\_datatype} trm $=$}\\ - \hspace{5mm}\phantom{$|$} Var name\\ - \hspace{5mm}$|$ App trm trm\\ - \hspace{5mm}$|$ Lam x::name t::trm - & \isacommand{bind} x \isacommand{in} t\\ - \hspace{5mm}$|$ Let as::assn t::trm - & \isacommand{bind} bn(as) \isacommand{in} t\\ - \multicolumn{2}{l}{\isacommand{and} assn $=$}\\ - \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} ANil}\\ - \multicolumn{2}{l}{\hspace{5mm}$|$ ACons name trm assn}\\ - \multicolumn{2}{l}{\isacommand{binder} bn \isacommand{where}}\\ - \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} bn(ANil) $=$ $[]$}\\ - \multicolumn{2}{l}{\hspace{5mm}$|$ bn(ACons a t as) $=$ $[$a$]$ @ bn(as)}\\ - \end{tabular} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-2> - \frametitle{\begin{tabular}{c}``Raw'' Definitions\end{tabular}} - \mbox{}\\[-6mm] - - \mbox{}\hspace{10mm} - \begin{tabular}{ll} - \multicolumn{2}{l}{\isacommand{datatype} trm $=$}\\ - \hspace{5mm}\phantom{$|$} Var name\\ - \hspace{5mm}$|$ App trm trm\\ - \hspace{5mm}$|$ Lam name trm\\ - \hspace{5mm}$|$ Let assn trm\\ - \multicolumn{2}{l}{\isacommand{and} assn $=$}\\ - \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} ANil}\\ - \multicolumn{2}{l}{\hspace{5mm}$|$ ACons name trm assn}\\[5mm] - \multicolumn{2}{l}{\isacommand{function} bn \isacommand{where}}\\ - \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} bn(ANil) $=$ $[]$}\\ - \multicolumn{2}{l}{\hspace{5mm}$|$ bn(ACons a t as) $=$ $[$a$]$ @ bn(as)}\\ - \end{tabular} - - \only<2>{ - \begin{textblock}{5}(10,5) - $+$ \begin{tabular}{l}automatically\\ - generate fv's\end{tabular} - \end{textblock}} - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1> - \frametitle{\begin{tabular}{c}\LARGE``Raw'' Alpha-Equivalence\end{tabular}} - \mbox{}\\[6mm] - - \begin{center} - Lam x::name t::trm \hspace{10mm}\isacommand{bind} x \isacommand{in} t\\ - \end{center} - - - \[ - \infer[\text{Lam-}\!\approx_\alpha] - {\text{Lam}\;x\;t \approx_\alpha \text{Lam}\;x'\;t'} - {([x], t) \approx\!\makebox[0mm][l]{${}_{\text{list}}$} - ^{\approx_\alpha,\text{fv}} ([x'], t')} - \] - - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1> - \frametitle{\begin{tabular}{c}\LARGE``Raw'' Alpha-Equivalence\end{tabular}} - \mbox{}\\[6mm] - - \begin{center} - Lam x::name y::name t::trm s::trm \hspace{5mm}\isacommand{bind} x y \isacommand{in} t s\\ - \end{center} - - - \[ - \infer[\text{Lam-}\!\approx_\alpha] - {\text{Lam}\;x\;y\;t\;s \approx_\alpha \text{Lam}\;x'\;y'\;t'\;s'} - {([x, y], (t, s)) \approx\!\makebox[0mm][l]{${}_{\text{list}}$} - ^{R, fv} ([x', y'], (t', s'))} - \] - - \footnotesize - where $R =\;\approx_\alpha\times\approx_\alpha$ and $fv = \text{fv}\cup\text{fv}$ - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-2> - \frametitle{\begin{tabular}{c}\LARGE``Raw'' Alpha-Equivalence\end{tabular}} - \mbox{}\\[6mm] - - \begin{center} - Let as::assn t::trm \hspace{10mm}\isacommand{bind} bn(as) \isacommand{in} t\\ - \end{center} - - - \[ - \infer[\text{Let-}\!\approx_\alpha] - {\text{Let}\;as\;t \approx_\alpha \text{Let}\;as'\;t'} - {(\text{bn}(as), t) \approx\!\makebox[0mm][l]{${}_{\text{list}}$} - ^{\approx_\alpha,\text{fv}} (\text{bn}(as'), t') & - \onslide<2->{as \approx_\alpha^{\text{bn}} as'}} - \]\bigskip - - - \onslide<1->{\small{}bn-function $\Rightarrow$ \alert{deep binders}} - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-> - \frametitle{\begin{tabular}{c}\LARGE{}$\alpha$ for Binding Functions\end{tabular}} - \mbox{}\\[-6mm] - - \mbox{}\hspace{10mm} - \begin{tabular}{l} - \ldots\\ - \isacommand{binder} bn \isacommand{where}\\ - \phantom{$|$} bn(ANil) $=$ $[]$\\ - $|$ bn(ACons a t as) $=$ $[$a$]$ @ bn(as)\\ - \end{tabular}\bigskip - - \begin{center} - \mbox{\infer{\text{ANil} \approx_\alpha^{\text{bn}} \text{ANil}}{}}\bigskip - - \mbox{\infer{\text{ACons}\;a\;t\;as \approx_\alpha^{\text{bn}} \text{ACons}\;a'\;t'\;as'} - {t \approx_\alpha t' & as \approx_\alpha^{bn} as'}} - \end{center} - - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1> - \frametitle{\begin{tabular}{c}\LARGE``Raw'' Alpha-Equivalence\end{tabular}} - \mbox{}\\[6mm] - - \begin{center} - LetRec as::assn t::trm \hspace{10mm}\isacommand{bind} bn(as) \isacommand{in} t \alert{as}\\ - \end{center} - - - \[\mbox{}\hspace{-4mm} - \infer[\text{LetRec-}\!\approx_\alpha] - {\text{LetRec}\;as\;t \approx_\alpha \text{LetRec}\;as'\;t'} - {(\text{bn}(as), (t, as)) \approx\!\makebox[0mm][l]{${}_{\text{list}}$} - ^{R,\text{fv}} (\text{bn}(as'), (t', as'))} - \]\bigskip - - \onslide<1->{\alert{deep recursive binders}} - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-> - \frametitle{\begin{tabular}{c}Restrictions\end{tabular}} - \mbox{}\\[-6mm] - - Our restrictions on binding specifications: - - \begin{itemize} - \item a body can only occur once in a list of binding clauses\medskip - \item you can only have one binding function for a deep binder\medskip - \item binding functions can return: the empty set, singletons, unions (similarly for lists) - \end{itemize} - - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-> - \frametitle{\begin{tabular}{c}Automatic Proofs\end{tabular}} - \mbox{}\\[-6mm] - - \begin{itemize} - \item we can show that $\alpha$'s are equivalence relations\medskip - \item as a result we can use our quotient package to introduce the type(s) - of $\alpha$-equated terms - - \[ - \infer - {\text{Lam}\;x\;t \alert{=} \text{Lam}\;x'\;t'} - {\only<1>{([x], t) \approx\!\makebox[0mm][l]{${}_{\text{list}}$} - ^{=,\text{supp}} ([x'], t')}% - \only<2>{[x].t = [x'].t'}} - \] - - - \item the properties for support are implied by the properties of $[\_].\_$ - \item we can derive strong induction principles - \end{itemize} - - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1>[t] - \frametitle{\begin{tabular}{c}Runtime is Acceptable\end{tabular}} - \mbox{}\\[-7mm]\mbox{} - - \footnotesize - \begin{center} - \begin{tikzpicture} - \draw (0,0) node[inner sep=2mm, ultra thick, draw=fg, rounded corners=2mm] - (A) {\begin{minipage}{0.8cm}bind.\\spec.\end{minipage}}; - - \draw (2,0) node[inner sep=2mm, ultra thick, draw=fg, rounded corners=2mm] - (B) {\begin{minipage}{0.8cm}raw\\terms\end{minipage}}; - - \draw (4,0) node[inner sep=2mm, ultra thick, draw=fg, rounded corners=2mm] - (C) {\begin{minipage}{0.8cm}$\alpha$-\\equiv.\end{minipage}}; - - \draw (0,-2) node[inner sep=2mm, ultra thick, draw=fg, rounded corners=2mm] - (D) {\begin{minipage}{0.8cm}quot.\\type\end{minipage}}; - - \draw (2,-2) node[inner sep=2mm, ultra thick, draw=fg, rounded corners=2mm] - (E) {\begin{minipage}{0.8cm}lift\\thms\end{minipage}}; - - \draw (4,-2) node[inner sep=2mm, ultra thick, draw=fg, rounded corners=2mm] - (F) {\begin{minipage}{0.8cm}add.\\thms\end{minipage}}; - - \draw[->,fg!50,line width=1mm] (A) -- (B); - \draw[->,fg!50,line width=1mm] (B) -- (C); - \draw[->,fg!50,line width=1mm, line join=round, rounded corners=2mm] - (C) -- (5,0) -- (5,-1) -- (-1,-1) -- (-1,-2) -- (D); - \draw[->,fg!50,line width=1mm] (D) -- (E); - \draw[->,fg!50,line width=1mm] (E) -- (F); - \end{tikzpicture} - \end{center} - - \begin{itemize} - \item Core Haskell: 11 types, 49 term-constructors, 7 binding functions - \begin{center} - $\sim$ 2 mins - \end{center} - \end{itemize} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-> - \frametitle{\begin{tabular}{c}Interesting Phenomenon\end{tabular}} - \mbox{}\\[-6mm] - - \small - \mbox{}\hspace{20mm} - \begin{tabular}{ll} - \multicolumn{2}{l}{\isacommand{nominal\_datatype} trm $=$}\\ - \hspace{5mm}\phantom{$|$} Var name\\ - \hspace{5mm}$|$ App trm trm\\ - \hspace{5mm}$|$ Lam x::name t::trm - & \isacommand{bind} x \isacommand{in} t\\ - \hspace{5mm}$|$ Let as::assn t::trm - & \isacommand{bind} bn(as) \isacommand{in} t\\ - \multicolumn{2}{l}{\isacommand{and} assn $=$}\\ - \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} ANil}\\ - \multicolumn{2}{l}{\hspace{5mm}$|$ ACons name trm assn}\\ - \multicolumn{2}{l}{\isacommand{binder} bn \isacommand{where}}\\ - \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} bn(ANil) $=$ $[]$}\\ - \multicolumn{2}{l}{\hspace{5mm}$|$ bn(ACons a t as) $=$ $[$a$]$ @ bn(as)}\\ - \end{tabular}\bigskip\medskip - - we cannot quotient assn: ACons a \ldots $\not\approx_\alpha$ ACons b \ldots - - \only<1->{ - \begin{textblock}{8}(0.2,7.3) - \alert{\begin{tabular}{p{2.6cm}} - \raggedright\footnotesize{}Should a ``naked'' assn be quotient? - \end{tabular}\hspace{-3mm} - $\begin{cases} - \mbox{} \\ \mbox{} - \end{cases}$} - \end{textblock}} - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-> - \frametitle{\begin{tabular}{c}Conclusion\end{tabular}} - \mbox{}\\[-6mm] - - \begin{itemize} - \item the user does not see anything of the raw level\medskip - \only<1>{\begin{center} - Lam a (Var a) \alert{$=$} Lam b (Var b) - \end{center}\bigskip} - - \item<2-> we have not yet done function definitions (will come soon and - we hope to make improvements over the old way there too)\medskip - \item<3-> it took quite some time to get here, but it seems worthwhile - (Barendregt's variable convention is unsound in general, - found bugs in two paper proofs, quotient package, POPL 2011 tutorial)\medskip - \end{itemize} - - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1->[c] - \frametitle{\begin{tabular}{c}Future Work\end{tabular}} - \mbox{}\\[-6mm] - - \begin{itemize} - \item Function definitions - \end{itemize} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1->[c] - \frametitle{\begin{tabular}{c}Questions?\end{tabular}} - \mbox{}\\[-6mm] - - \begin{center} - \alert{\huge{Thanks!}} - \end{center} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - - - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-2>[c] - \frametitle{\begin{tabular}{c}Examples\end{tabular}} - \mbox{}\\[-6mm] - - \begin{center} - $(\{a,b\}, a \rightarrow b) \approx_\alpha (\{a, b\}, a \rightarrow b)$ - $(\{a,b\}, a \rightarrow b) \approx_\alpha (\{a, b\}, b \rightarrow a)$ - \end{center} - - \begin{center} - $(\{a,b\}, (a \rightarrow b, a \rightarrow b))$\\ - \hspace{17mm}$\not\approx_\alpha (\{a, b\}, (a \rightarrow b, b \rightarrow a))$ - \end{center} - - \onslide<2-> - {1.) \hspace{3mm}\isacommand{bind (set)} as \isacommand{in} $\tau_1$, - \isacommand{bind (set)} as \isacommand{in} $\tau_2$\medskip - - 2.) \hspace{3mm}\isacommand{bind (set)} as \isacommand{in} $\tau_1$ $\tau_2$ - } - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -(*<*) -end -(*>*) \ No newline at end of file