diff -r fb201e383f1b -r da575186d492 Nominal/Ex/LetSimple1.thy --- a/Nominal/Ex/LetSimple1.thy Tue Feb 19 05:38:46 2013 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,111 +0,0 @@ -theory LetSimple1 -imports "../Nominal2" -begin - -atom_decl name - -nominal_datatype trm = - Var "name" -| App "trm" "trm" -| Let x::"name" "trm" t::"trm" binds x in t - -print_theorems - -thm trm.fv_defs -thm trm.eq_iff -thm trm.bn_defs -thm trm.bn_inducts -thm trm.perm_simps -thm trm.induct -thm trm.inducts -thm trm.distinct -thm trm.supp -thm trm.fresh -thm trm.exhaust -thm trm.strong_exhaust -thm trm.perm_bn_simps - -nominal_primrec - height_trm :: "trm \ nat" -where - "height_trm (Var x) = 1" -| "height_trm (App l r) = max (height_trm l) (height_trm r)" -| "height_trm (Let x t s) = max (height_trm t) (height_trm s)" - apply (simp only: eqvt_def height_trm_graph_def) - apply (rule, perm_simp, rule, rule TrueI) - apply (case_tac x rule: trm.exhaust(1)) - apply (auto)[3] - apply(simp_all)[5] - apply (subgoal_tac "height_trm_sumC t = height_trm_sumC ta") - apply (subgoal_tac "height_trm_sumC s = height_trm_sumC sa") - apply simp - apply(simp) - apply(erule conjE) - apply(erule_tac c="()" in Abs_lst1_fcb2) - apply(simp_all add: fresh_star_def pure_fresh)[2] - apply(simp_all add: eqvt_at_def)[2] - apply(simp) - done - -termination - by lexicographic_order - - -nominal_primrec (invariant "\x (y::atom set). finite y") - frees_set :: "trm \ atom set" -where - "frees_set (Var x) = {atom x}" -| "frees_set (App t1 t2) = frees_set t1 \ frees_set t2" -| "frees_set (Let x t s) = (frees_set s) - {atom x} \ (frees_set t)" - apply(simp add: eqvt_def frees_set_graph_def) - apply(rule, perm_simp, rule) - apply(erule frees_set_graph.induct) - apply(auto)[3] - apply(rule_tac y="x" in trm.exhaust) - apply(auto)[3] - apply(simp_all)[5] - apply(simp) - apply(erule conjE) - apply(subgoal_tac "frees_set_sumC s - {atom x} = frees_set_sumC sa - {atom xa}") - apply(simp) - apply(erule_tac c="()" in Abs_lst1_fcb2) - apply(simp add: fresh_minus_atom_set) - apply(simp add: fresh_star_def fresh_Unit) - apply(simp add: Diff_eqvt eqvt_at_def, perm_simp, rule refl) - apply(simp add: Diff_eqvt eqvt_at_def, perm_simp, rule refl) - done - -termination - by lexicographic_order - - -nominal_primrec - subst :: "trm \ name \ trm \ trm" ("_ [_ ::= _]" [90, 90, 90] 90) -where - "(Var x)[y ::= s] = (if x = y then s else (Var x))" -| "(App t1 t2)[y ::= s] = App (t1[y ::= s]) (t2[y ::= s])" -| "atom x \ (y, s) \ (Let x t t')[y ::= s] = Let x (t[y ::= s]) (t'[y ::= s])" - apply(simp add: eqvt_def subst_graph_def) - apply (rule, perm_simp, rule) - apply(rule TrueI) - apply(auto)[1] - apply(rule_tac y="a" and c="(aa, b)" in trm.strong_exhaust) - apply(blast)+ - apply(simp_all add: fresh_star_def fresh_Pair_elim)[1] - apply(blast) - apply(simp_all)[5] - apply(simp (no_asm_use)) - apply(simp) - apply(erule conjE)+ - apply (erule_tac c="(ya,sa)" in Abs_lst1_fcb2) - apply(simp add: Abs_fresh_iff) - apply(simp add: fresh_star_def fresh_Pair) - apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq) - apply(simp add: eqvt_at_def atom_eqvt fresh_star_Pair perm_supp_eq) -done - -termination - by lexicographic_order - - -end \ No newline at end of file