diff -r fb201e383f1b -r da575186d492 Nominal/Ex/LetInv.thy --- a/Nominal/Ex/LetInv.thy Tue Feb 19 05:38:46 2013 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,284 +0,0 @@ -theory Let -imports "../Nominal2" -begin - -atom_decl name - -nominal_datatype trm = - Var "name" -| App "trm" "trm" -| Lam x::"name" t::"trm" binds x in t -| Let as::"assn" t::"trm" binds "bn as" in t -and assn = - ANil -| ACons "name" "trm" "assn" -binder - bn -where - "bn ANil = []" -| "bn (ACons x t as) = (atom x) # (bn as)" - -print_theorems - -thm alpha_trm_raw_alpha_assn_raw_alpha_bn_raw.intros -thm bn_raw.simps -thm permute_bn_raw.simps -thm trm_assn.perm_bn_alpha -thm trm_assn.permute_bn - -thm trm_assn.fv_defs -thm trm_assn.eq_iff -thm trm_assn.bn_defs -thm trm_assn.bn_inducts -thm trm_assn.perm_simps -thm trm_assn.induct -thm trm_assn.inducts -thm trm_assn.distinct -thm trm_assn.supp -thm trm_assn.fresh -thm trm_assn.exhaust -thm trm_assn.strong_exhaust -thm trm_assn.perm_bn_simps - -lemma alpha_bn_inducts_raw[consumes 1]: - "\alpha_bn_raw a b; P3 ANil_raw ANil_raw; - \trm_raw trm_rawa assn_raw assn_rawa name namea. - \alpha_trm_raw trm_raw trm_rawa; alpha_bn_raw assn_raw assn_rawa; - P3 assn_raw assn_rawa\ - \ P3 (ACons_raw name trm_raw assn_raw) - (ACons_raw namea trm_rawa assn_rawa)\ \ P3 a b" - by (erule alpha_trm_raw_alpha_assn_raw_alpha_bn_raw.inducts(3)[of _ _ "\x y. True" _ "\x y. True", simplified]) auto - -lemmas alpha_bn_inducts[consumes 1] = alpha_bn_inducts_raw[quot_lifted] - - - -lemma alpha_bn_refl: "alpha_bn x x" - by (induct x rule: trm_assn.inducts(2)) - (rule TrueI, auto simp add: trm_assn.eq_iff) -lemma alpha_bn_sym: "alpha_bn x y \ alpha_bn y x" - sorry -lemma alpha_bn_trans: "alpha_bn x y \ alpha_bn y z \ alpha_bn x z" - sorry - -lemma bn_inj[rule_format]: - assumes a: "alpha_bn x y" - shows "bn x = bn y \ x = y" - by (rule alpha_bn_inducts[OF a]) (simp_all add: trm_assn.bn_defs) - -lemma bn_inj2: - assumes a: "alpha_bn x y" - shows "\q r. (q \ bn x) = (r \ bn y) \ permute_bn q x = permute_bn r y" -using a -apply(induct rule: alpha_bn_inducts) -apply(simp add: trm_assn.perm_bn_simps) -apply(simp add: trm_assn.perm_bn_simps) -apply(simp add: trm_assn.bn_defs) -apply(simp add: atom_eqvt) -done - -lemma Abs_lst_fcb2: - fixes as bs :: "atom list" - and x y :: "'b :: fs" - and c::"'c::fs" - assumes eq: "[as]lst. x = [bs]lst. y" - and fcb1: "(set as) \* c \ (set as) \* f as x c" - and fresh1: "set as \* c" - and fresh2: "set bs \* c" - and perm1: "\p. supp p \* c \ p \ (f as x c) = f (p \ as) (p \ x) c" - and perm2: "\p. supp p \* c \ p \ (f bs y c) = f (p \ bs) (p \ y) c" - shows "f as x c = f bs y c" -proof - - have "supp (as, x, c) supports (f as x c)" - unfolding supports_def fresh_def[symmetric] - by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh) - then have fin1: "finite (supp (f as x c))" - by (auto intro: supports_finite simp add: finite_supp) - have "supp (bs, y, c) supports (f bs y c)" - unfolding supports_def fresh_def[symmetric] - by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh) - then have fin2: "finite (supp (f bs y c))" - by (auto intro: supports_finite simp add: finite_supp) - obtain q::"perm" where - fr1: "(q \ (set as)) \* (x, c, f as x c, f bs y c)" and - fr2: "supp q \* Abs_lst as x" and - inc: "supp q \ (set as) \ q \ (set as)" - using at_set_avoiding3[where xs="set as" and c="(x, c, f as x c, f bs y c)" and x="[as]lst. x"] - fin1 fin2 - by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv) - have "Abs_lst (q \ as) (q \ x) = q \ Abs_lst as x" by simp - also have "\ = Abs_lst as x" - by (simp only: fr2 perm_supp_eq) - finally have "Abs_lst (q \ as) (q \ x) = Abs_lst bs y" using eq by simp - then obtain r::perm where - qq1: "q \ x = r \ y" and - qq2: "q \ as = r \ bs" and - qq3: "supp r \ (q \ (set as)) \ set bs" - apply(drule_tac sym) - apply(simp only: Abs_eq_iff2 alphas) - apply(erule exE) - apply(erule conjE)+ - apply(drule_tac x="p" in meta_spec) - apply(simp add: set_eqvt) - apply(blast) - done - have "(set as) \* f as x c" - apply(rule fcb1) - apply(rule fresh1) - done - then have "q \ ((set as) \* f as x c)" - by (simp add: permute_bool_def) - then have "set (q \ as) \* f (q \ as) (q \ x) c" - apply(simp add: fresh_star_eqvt set_eqvt) - apply(subst (asm) perm1) - using inc fresh1 fr1 - apply(auto simp add: fresh_star_def fresh_Pair) - done - then have "set (r \ bs) \* f (r \ bs) (r \ y) c" using qq1 qq2 by simp - then have "r \ ((set bs) \* f bs y c)" - apply(simp add: fresh_star_eqvt set_eqvt) - apply(subst (asm) perm2[symmetric]) - using qq3 fresh2 fr1 - apply(auto simp add: set_eqvt fresh_star_def fresh_Pair) - done - then have fcb2: "(set bs) \* f bs y c" by (simp add: permute_bool_def) - have "f as x c = q \ (f as x c)" - apply(rule perm_supp_eq[symmetric]) - using inc fcb1[OF fresh1] fr1 by (auto simp add: fresh_star_def) - also have "\ = f (q \ as) (q \ x) c" - apply(rule perm1) - using inc fresh1 fr1 by (auto simp add: fresh_star_def) - also have "\ = f (r \ bs) (r \ y) c" using qq1 qq2 by simp - also have "\ = r \ (f bs y c)" - apply(rule perm2[symmetric]) - using qq3 fresh2 fr1 by (auto simp add: fresh_star_def) - also have "... = f bs y c" - apply(rule perm_supp_eq) - using qq3 fr1 fcb2 by (auto simp add: fresh_star_def) - finally show ?thesis by simp -qed - -lemma Abs_lst1_fcb2: - fixes a b :: "atom" - and x y :: "'b :: fs" - and c::"'c :: fs" - assumes e: "(Abs_lst [a] x) = (Abs_lst [b] y)" - and fcb1: "a \ c \ a \ f a x c" - and fresh: "{a, b} \* c" - and perm1: "\p. supp p \* c \ p \ (f a x c) = f (p \ a) (p \ x) c" - and perm2: "\p. supp p \* c \ p \ (f b y c) = f (p \ b) (p \ y) c" - shows "f a x c = f b y c" -using e -apply(drule_tac Abs_lst_fcb2[where c="c" and f="\(as::atom list) . f (hd as)"]) -apply(simp_all) -using fcb1 fresh perm1 perm2 -apply(simp_all add: fresh_star_def) -done - - -function - apply_assn2 :: "(trm \ trm) \ assn \ assn" -where - "apply_assn2 f ANil = ANil" -| "apply_assn2 f (ACons x t as) = ACons x (f t) (apply_assn2 f as)" - apply(case_tac x) - apply(case_tac b rule: trm_assn.exhaust(2)) - apply(simp_all) - apply(blast) - done - -termination by lexicographic_order - -lemma apply_assn_eqvt[eqvt]: - "p \ (apply_assn2 f a) = apply_assn2 (p \ f) (p \ a)" - apply(induct f a rule: apply_assn2.induct) - apply simp_all - apply(perm_simp) - apply rule - done - -lemma - fixes x y :: "'a :: fs" - shows "[a # as]lst. x = [b # bs]lst. y \ [[a]]lst. [as]lst. x = [[b]]lst. [bs]lst. y" - apply (simp add: Abs_eq_iff) - apply (elim exE) - apply (rule_tac x="p" in exI) - apply (simp add: alphas) - apply clarify - apply rule - apply (simp add: supp_Abs) - apply blast - apply (simp add: supp_Abs fresh_star_def) - apply blast - done - -lemma - assumes neq: "a \ b" "sort_of a = sort_of b" - shows "[[a]]lst. [[a]]lst. a = [[a]]lst. [[b]]lst. b \ [[a, a]]lst. a \ [[a, b]]lst. b" - apply (simp add: Abs1_eq_iff) - apply rule - apply (simp add: Abs_eq_iff alphas supp_atom fresh_star_def) - apply (rule_tac x="(a \ b)" in exI) - apply (simp add: neq) - apply (simp add: Abs_eq_iff alphas supp_atom fresh_star_def neq) - done - -nominal_primrec - subst :: "name \ trm \ trm \ trm" -where - "subst s t (Var x) = (if (s = x) then t else (Var x))" -| "subst s t (App l r) = App (subst s t l) (subst s t r)" -| "atom v \ (s, t) \ subst s t (Lam v b) = Lam v (subst s t b)" -| "set (bn as) \* (s, t) \ subst s t (Let as b) = Let (apply_assn2 (subst s t) as) (subst s t b)" - apply (simp only: eqvt_def subst_graph_def) - apply (rule, perm_simp, rule) - apply (rule TrueI) - apply (case_tac x) - apply (rule_tac y="c" and c="(a,b)" in trm_assn.strong_exhaust(1)) - apply (auto simp add: fresh_star_def)[3] - apply (drule_tac x="assn" in meta_spec) - apply (simp add: Abs1_eq_iff alpha_bn_refl) - apply auto[7] - prefer 2 - apply(simp) - thm subst_sumC_def - thm THE_default_def - thm theI - apply (erule_tac c="(sa, ta)" in Abs_lst1_fcb2) - apply (simp add: Abs_fresh_iff) - apply (simp add: fresh_star_def) - apply (simp_all add: fresh_star_Pair_elim perm_supp_eq eqvt_at_def)[2] - apply (subgoal_tac "apply_assn2 (\x2\trm. subst_sumC (sa, ta, x2)) asa - = apply_assn2 (\x2\trm. subst_sumC (sa, ta, x2)) as") - prefer 2 - apply (erule alpha_bn_inducts) - apply simp - apply (simp only: apply_assn2.simps) - apply simp ---"We know nothing about names; not true; but we can apply fcb2" - defer - apply (simp only: ) - apply (erule_tac c="(sa, ta)" in Abs_lst_fcb2) ---"We again need induction for fcb assumption; this time true" - apply (induct_tac as rule: trm_assn.inducts(2)) - apply (rule TrueI)+ - apply (simp_all add: trm_assn.bn_defs fresh_star_def)[2] - apply (auto simp add: Abs_fresh_iff)[1] - apply assumption+ ---"But eqvt is not going to be true as well" - apply (simp add: fresh_star_Pair_elim perm_supp_eq eqvt_at_def trm_assn.fv_bn_eqvt) - apply (simp add: apply_assn_eqvt) - apply (drule sym) - apply (subgoal_tac "p \ (\x2\trm. subst_sumC (sa, ta, x2)) = (\x2\trm. subst_sumC (sa, ta, x2))") - apply (simp) - apply (erule alpha_bn_inducts) - apply simp - apply simp - apply (simp add: trm_assn.bn_defs) ---"Again we cannot relate 'namea' with 'p \ name'" - prefer 4 - apply (erule alpha_bn_inducts) - apply simp_all[2] - oops - -end