diff -r fb201e383f1b -r da575186d492 Attic/Fv.thy --- a/Attic/Fv.thy Tue Feb 19 05:38:46 2013 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,678 +0,0 @@ -theory Fv -imports "../Nominal-General/Nominal2_Atoms" - "Abs" "Perm" "Rsp" "Nominal2_FSet" -begin - -(* The bindings data structure: - - Bindings are a list of lists of lists of triples. - - The first list represents the datatypes defined. - The second list represents the constructors. - The internal list is a list of all the bndings that - concern the constructor. - - Every triple consists of a function, the binding and - the body. - - Eg: -nominal_datatype - - C1 - | C2 x y z bind x in z - | C3 x y z bind f x in z bind g y in z - -yields: -[ - [], - [(NONE, 0, 2)], - [(SOME (Const f), 0, 2), (Some (Const g), 1, 2)]] - -A SOME binding has to have a function which takes an appropriate -argument and returns an atom set. A NONE binding has to be on an -argument that is an atom or an atom set. -*) - -(* -An overview of the generation of free variables: - -1) fv_bn functions are generated only for the non-recursive binds. - - An fv_bn for a constructor is a union of values for the arguments: - - For an argument x that is in the bn function - - if it is a recursive argument bn' we return: fv_bn' x - - otherwise empty - - For an argument x that is not in the bn function - - for atom we return: {atom x} - - for atom set we return: atom ` x - - for a recursive call to type ty' we return: fv_ty' x - with fv of the appropriate type - - otherwise empty - -2) fv_ty functions generated for all types being defined: - - fv_ty for a constructor is a union of values for the arguments. - - For an argument that is bound in a shallow binding we return empty. - - For an argument x that bound in a non-recursive deep binding - we return: fv_bn x. - - Otherwise we return the free variables of the argument minus the - bound variables of the argument. - - The free variables for an argument x are: - - for an atom: {atom x} - - for atom set: atom ` x - - for recursive call to type ty' return: fv_ty' x - - for nominal datatype ty' return: fv_ty' x - - The bound variables are a union of results of all bindings that - involve the given argument. For a paricular binding: - - - for a binding function bn: bn x - - for a recursive argument of type ty': fv_fy' x - - for nominal datatype ty' return: fv_ty' x -*) - -(* -An overview of the generation of alpha-equivalence: - -1) alpha_bn relations are generated for binding functions. - - An alpha_bn for a constructor is true if a conjunction of - propositions for each argument holds. - - For an argument a proposition is build as follows from - th: - - - for a recursive argument in the bn function, we return: alpha_bn argl argr - - for a recursive argument for type ty not in bn, we return: alpha_ty argl argr - - for other arguments in the bn function we return: True - - for other arguments not in the bn function we return: argl = argr - -2) alpha_ty relations are generated for all the types being defined: - - For each constructor we gather all the arguments that are bound, - and for each of those we add a permutation. We associate those - permutations with the bindings. Note that two bindings can have - the same permutation if the arguments being bound are the same. - - An alpha_ty for a constructor is true if there exist permutations - as above such that a conjunction of propositions for all arguments holds. - - For an argument we allow bindings where only one of the following - holds: - - - Argument is bound in some shallow bindings: We return true - - Argument of type ty is bound recursively in some other - arguments [i1, .. in] with one binding function bn. - We return: - - (bn argl, (argl, argl_i1, ..., argl_in)) \gen - \(argl,argl1,..,argln) (argr,argr1,..,argrn). - (alpha_ty argl argr) \ (alpha_i1 argl1 argr1) \ .. \ (alpha_in argln argrn) - \(arg,arg1,..,argn). (fv_ty arg) \ (fv_i1 arg1) \ .. \ (fv_in argn) - pi - (bn argr, (argr, argr_i1, ..., argr_in)) - - - Argument is bound in some deep non-recursive bindings. - We return: alpha_bn argl argr - - Argument of type ty has some shallow bindings [b1..bn] and/or - non-recursive bindings [f1 a1, .., fm am], where the bindings - have the permutations p1..pl. We return: - - (b1l \..\ bnl \ f1 a1l \..\ fn anl, argl) \gen - alpha_ty fv_ty (p1 +..+ pl) - (b1r \..\ bnr \ f1 a1r \..\ fn anr, argr) - - - Argument has some recursive bindings. The bindings were - already treated in 2nd case so we return: True - - Argument has no bindings and is not bound. - If it is recursive for type ty, we return: alpha_ty argl argr - Otherwise we return: argl = argr - -*) - - -ML {* -datatype alpha_mode = AlphaGen | AlphaRes | AlphaLst; -*} - -ML {* -fun atyp_const AlphaGen = @{const_name alpha_gen} - | atyp_const AlphaRes = @{const_name alpha_res} - | atyp_const AlphaLst = @{const_name alpha_lst} -*} - -(* TODO: make sure that parser checks that bindings are compatible *) -ML {* -fun alpha_const_for_binds [] = atyp_const AlphaGen - | alpha_const_for_binds ((NONE, _, _, at) :: t) = atyp_const at - | alpha_const_for_binds ((SOME (_, _), _, _, at) :: _) = atyp_const at -*} - -ML {* -fun is_atom thy typ = - Sign.of_sort thy (typ, @{sort at}) - -fun is_atom_set thy (Type ("fun", [t, @{typ bool}])) = is_atom thy t - | is_atom_set _ _ = false; - -fun is_atom_fset thy (Type ("FSet.fset", [t])) = is_atom thy t - | is_atom_fset _ _ = false; -*} - - -(* Like map2, only if the second list is empty passes empty lists insted of error *) -ML {* -fun map2i _ [] [] = [] - | map2i f (x :: xs) (y :: ys) = f x y :: map2i f xs ys - | map2i f (x :: xs) [] = f x [] :: map2i f xs [] - | map2i _ _ _ = raise UnequalLengths; -*} - -(* Finds bindings with the same function and binding, and gathers all - bodys for such pairs - *) -ML {* -fun gather_binds binds = -let - fun gather_binds_cons binds = - let - val common = map (fn (f, bi, _, aty) => (f, bi, aty)) binds - val nodups = distinct (op =) common - fun find_bodys (sf, sbi, sty) = - filter (fn (f, bi, _, aty) => f = sf andalso bi = sbi andalso aty = sty) binds - val bodys = map ((map (fn (_, _, bo, _) => bo)) o find_bodys) nodups - in - nodups ~~ bodys - end -in - map (map gather_binds_cons) binds -end -*} - -ML {* -fun un_gather_binds_cons binds = - flat (map (fn (((f, bi, aty), bos), pi) => map (fn bo => ((f, bi, bo, aty), pi)) bos) binds) -*} - -ML {* - open Datatype_Aux; (* typ_of_dtyp, DtRec, ... *); -*} -ML {* - (* TODO: It is the same as one in 'nominal_atoms' *) - fun mk_atom ty = Const (@{const_name atom}, ty --> @{typ atom}); - val noatoms = @{term "{} :: atom set"}; - fun mk_single_atom x = HOLogic.mk_set @{typ atom} [mk_atom (type_of x) $ x]; - fun mk_union sets = - fold (fn a => fn b => - if a = noatoms then b else - if b = noatoms then a else - if a = b then a else - HOLogic.mk_binop @{const_name sup} (a, b)) (rev sets) noatoms; - val mk_inter = foldr1 (HOLogic.mk_binop @{const_name inf}) - fun mk_diff a b = - if b = noatoms then a else - if b = a then noatoms else - HOLogic.mk_binop @{const_name minus} (a, b); - fun mk_atom_set t = - let - val ty = fastype_of t; - val atom_ty = HOLogic.dest_setT ty --> @{typ atom}; - val img_ty = atom_ty --> ty --> @{typ "atom set"}; - in - (Const (@{const_name image}, img_ty) $ Const (@{const_name atom}, atom_ty) $ t) - end; - fun mk_atom_fset t = - let - val ty = fastype_of t; - val atom_ty = dest_fsetT ty --> @{typ atom}; - val fmap_ty = atom_ty --> ty --> @{typ "atom fset"}; - val fset_to_set = @{term "fset_to_set :: atom fset \ atom set"} - in - fset_to_set $ ((Const (@{const_name fmap}, fmap_ty) $ Const (@{const_name atom}, atom_ty) $ t)) - end; - (* Similar to one in USyntax *) - fun mk_pair (fst, snd) = - let val ty1 = fastype_of fst - val ty2 = fastype_of snd - val c = HOLogic.pair_const ty1 ty2 - in c $ fst $ snd - end; -*} - -(* Given [fv1, fv2, fv3] creates %(x, y, z). fv1 x u fv2 y u fv3 z *) -ML {* -fun mk_compound_fv fvs = -let - val nos = (length fvs - 1) downto 0; - val fvs_applied = map (fn (fv, no) => fv $ Bound no) (fvs ~~ nos); - val fvs_union = mk_union fvs_applied; - val (tyh :: tys) = rev (map (domain_type o fastype_of) fvs); - fun fold_fun ty t = HOLogic.mk_split (Abs ("", ty, t)) -in - fold fold_fun tys (Abs ("", tyh, fvs_union)) -end; -*} - -(* Given [R1, R2, R3] creates %(x,x'). %(y,y'). %(z,z'). R x x' \ R y y' \ R z z' *) -ML {* -fun mk_compound_alpha Rs = -let - val nos = (length Rs - 1) downto 0; - val nos2 = (2 * length Rs - 1) downto length Rs; - val Rs_applied = map (fn (R, (no2, no)) => R $ Bound no2 $ Bound no) (Rs ~~ (nos2 ~~ nos)); - val Rs_conj = mk_conjl Rs_applied; - val (tyh :: tys) = rev (map (domain_type o fastype_of) Rs); - fun fold_fun ty t = HOLogic.mk_split (Abs ("", ty, t)) - val abs_rhs = fold fold_fun tys (Abs ("", tyh, Rs_conj)) -in - fold fold_fun tys (Abs ("", tyh, abs_rhs)) -end; -*} - - -ML {* -fun non_rec_binds l = -let - fun is_non_rec (SOME (f, false), _, _, _) = SOME f - | is_non_rec _ = NONE -in - distinct (op =) (map_filter is_non_rec (flat (flat l))) -end -*} - -(* We assume no bindings in the type on which bn is defined *) -ML {* -fun fv_bn thy (dt_info : Datatype_Aux.info) fv_frees bn_fvbn (fvbn, (bn, ith_dtyp, args_in_bns)) = -let - val {descr, sorts, ...} = dt_info; - fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i); - fun fv_bn_constr (cname, dts) args_in_bn = - let - val Ts = map (typ_of_dtyp descr sorts) dts; - val names = Datatype_Prop.make_tnames Ts; - val args = map Free (names ~~ Ts); - val c = Const (cname, Ts ---> (nth_dtyp ith_dtyp)); - fun fv_arg ((dt, x), arg_no) = - let - val ty = fastype_of x -(* val _ = tracing ("B 1" ^ PolyML.makestring args_in_bn);*) -(* val _ = tracing ("B 2" ^ PolyML.makestring bn_fvbn);*) - in - case AList.lookup (op=) args_in_bn arg_no of - SOME NONE => @{term "{} :: atom set"} - | SOME (SOME (f : term)) => (the (AList.lookup (op=) bn_fvbn f)) $ x - | NONE => - if is_atom thy ty then mk_single_atom x else - if is_atom_set thy ty then mk_atom_set x else - if is_atom_fset thy ty then mk_atom_fset x else - if is_rec_type dt then nth fv_frees (body_index dt) $ x else - @{term "{} :: atom set"} - end; - val arg_nos = 0 upto (length dts - 1) - in - HOLogic.mk_Trueprop (HOLogic.mk_eq - (fvbn $ list_comb (c, args), mk_union (map fv_arg (dts ~~ args ~~ arg_nos)))) - end; - val (_, (_, _, constrs)) = nth descr ith_dtyp; - val eqs = map2i fv_bn_constr constrs args_in_bns -in - ((bn, fvbn), eqs) -end -*} - -ML {* print_depth 100 *} -ML {* -fun fv_bns thy dt_info fv_frees rel_bns = -let - fun mk_fvbn_free (bn, ith, _) = - let - val fvbn_name = "fv_" ^ (Long_Name.base_name (fst (dest_Const bn))); - in - (fvbn_name, Free (fvbn_name, fastype_of (nth fv_frees ith))) - end; - val (fvbn_names, fvbn_frees) = split_list (map mk_fvbn_free rel_bns); - val bn_fvbn = (map (fn (bn, _, _) => bn) rel_bns) ~~ fvbn_frees - val (l1, l2) = split_list (map (fv_bn thy dt_info fv_frees bn_fvbn) (fvbn_frees ~~ rel_bns)); -in - (l1, (fvbn_names ~~ l2)) -end -*} - - -ML {* -fun alpha_bn (dt_info : Datatype_Aux.info) alpha_frees bn_alphabn ((bn, ith_dtyp, args_in_bns), (alpha_bn_free, _ (*is_rec*) )) = -let - val {descr, sorts, ...} = dt_info; - fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i); - fun alpha_bn_constr (cname, dts) args_in_bn = - let - val Ts = map (typ_of_dtyp descr sorts) dts; - val names = Name.variant_list ["pi"] (Datatype_Prop.make_tnames Ts); - val names2 = Name.variant_list ("pi" :: names) (Datatype_Prop.make_tnames Ts); - val args = map Free (names ~~ Ts); - val args2 = map Free (names2 ~~ Ts); - val c = Const (cname, Ts ---> (nth_dtyp ith_dtyp)); - val rhs = HOLogic.mk_Trueprop - (alpha_bn_free $ (list_comb (c, args)) $ (list_comb (c, args2))); - fun lhs_arg ((dt, arg_no), (arg, arg2)) = - case AList.lookup (op=) args_in_bn arg_no of - SOME NONE => @{term True} - | SOME (SOME f) => (the (AList.lookup (op=) bn_alphabn f)) $ arg $ arg2 - | NONE => - if is_rec_type dt then (nth alpha_frees (body_index dt)) $ arg $ arg2 - else HOLogic.mk_eq (arg, arg2) - val arg_nos = 0 upto (length dts - 1) - val lhss = mk_conjl (map lhs_arg (dts ~~ arg_nos ~~ (args ~~ args2))) - val eq = Logic.mk_implies (HOLogic.mk_Trueprop lhss, rhs) - in - eq - end - val (_, (_, _, constrs)) = nth descr ith_dtyp; - val eqs = map2i alpha_bn_constr constrs args_in_bns -in - ((bn, alpha_bn_free), eqs) -end -*} - -ML {* -fun alpha_bns dt_info alpha_frees rel_bns bns_rec = -let - val {descr, sorts, ...} = dt_info; - fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i); - fun mk_alphabn_free (bn, ith, _) = - let - val alphabn_name = "alpha_" ^ (Long_Name.base_name (fst (dest_Const bn))); - val alphabn_type = nth_dtyp ith --> nth_dtyp ith --> @{typ bool}; - val alphabn_free = Free(alphabn_name, alphabn_type); - in - (alphabn_name, alphabn_free) - end; - val (alphabn_names, alphabn_frees) = split_list (map mk_alphabn_free rel_bns); - val bn_alphabn = (map (fn (bn, _, _) => bn) rel_bns) ~~ alphabn_frees; - val pair = split_list (map (alpha_bn dt_info alpha_frees bn_alphabn) - (rel_bns ~~ (alphabn_frees ~~ bns_rec))) -in - (alphabn_names, pair) -end -*} - - -(* Checks that a list of bindings contains only compatible ones *) -ML {* -fun bns_same l = - length (distinct (op =) (map (fn ((b, _, _, atyp), _) => (b, atyp)) l)) = 1 -*} - -ML {* -fun setify x = - if fastype_of x = @{typ "atom list"} then - Const (@{const_name set}, @{typ "atom list \ atom set"}) $ x else x -*} - -ML {* -fun define_fv (dt_info : Datatype_Aux.info) bindsall bns lthy = -let - val thy = ProofContext.theory_of lthy; - val {descr, sorts, ...} = dt_info; - fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i); - val fv_names = Datatype_Prop.indexify_names (map (fn (i, _) => - "fv_" ^ name_of_typ (nth_dtyp i)) descr); - val fv_types = map (fn (i, _) => nth_dtyp i --> @{typ "atom set"}) descr; - val fv_frees = map Free (fv_names ~~ fv_types); -(* TODO: We need a transitive closure, but instead we do this hack considering - all binding functions as recursive or not *) - val nr_bns = - if (non_rec_binds bindsall) = [] then [] - else map (fn (bn, _, _) => bn) bns; - val rel_bns = filter (fn (bn, _, _) => bn mem nr_bns) bns; - val (bn_fv_bns, fv_bn_names_eqs) = fv_bns thy dt_info fv_frees rel_bns; - val fvbns = map snd bn_fv_bns; - val (fv_bn_names, fv_bn_eqs) = split_list fv_bn_names_eqs; - - fun fv_constr ith_dtyp (cname, dts) bindcs = - let - val Ts = map (typ_of_dtyp descr sorts) dts; - val bindslen = length bindcs - val pi_strs_same = replicate bindslen "pi" - val pi_strs = Name.variant_list [] pi_strs_same; - val pis = map (fn ps => Free (ps, @{typ perm})) pi_strs; - val bind_pis_gath = bindcs ~~ pis; - val bind_pis = un_gather_binds_cons bind_pis_gath; - val bindcs = map fst bind_pis; - val names = Name.variant_list pi_strs (Datatype_Prop.make_tnames Ts); - val args = map Free (names ~~ Ts); - val c = Const (cname, Ts ---> (nth_dtyp ith_dtyp)); - val fv_c = nth fv_frees ith_dtyp; - val arg_nos = 0 upto (length dts - 1) - fun fv_bind args (NONE, i, _, _) = - if is_rec_type (nth dts i) then (nth fv_frees (body_index (nth dts i))) $ (nth args i) else - if ((is_atom thy) o fastype_of) (nth args i) then mk_single_atom (nth args i) else - if ((is_atom_set thy) o fastype_of) (nth args i) then mk_atom_set (nth args i) else - if ((is_atom_fset thy) o fastype_of) (nth args i) then mk_atom_fset (nth args i) else - (* TODO goes the code for preiously defined nominal datatypes *) - @{term "{} :: atom set"} - | fv_bind args (SOME (f, _), i, _, _) = f $ (nth args i) - fun fv_binds_as_set args relevant = mk_union (map (setify o fv_bind args) relevant) - fun find_nonrec_binder j (SOME (f, false), i, _, _) = if i = j then SOME f else NONE - | find_nonrec_binder _ _ = NONE - fun fv_arg ((dt, x), arg_no) = - case get_first (find_nonrec_binder arg_no) bindcs of - SOME f => - (case get_first (fn (x, y) => if x = f then SOME y else NONE) bn_fv_bns of - SOME fv_bn => fv_bn $ x - | NONE => error "bn specified in a non-rec binding but not in bn list") - | NONE => - let - val arg = - if is_rec_type dt then nth fv_frees (body_index dt) $ x else - if ((is_atom thy) o fastype_of) x then mk_single_atom x else - if ((is_atom_set thy) o fastype_of) x then mk_atom_set x else - if ((is_atom_fset thy) o fastype_of) x then mk_atom_fset x else - (* TODO goes the code for preiously defined nominal datatypes *) - @{term "{} :: atom set"}; - (* If i = j then we generate it only once *) - val relevant = filter (fn (_, i, j, _) => ((i = arg_no) orelse (j = arg_no))) bindcs; - val sub = fv_binds_as_set args relevant - in - mk_diff arg sub - end; - val fv_eq = HOLogic.mk_Trueprop (HOLogic.mk_eq - (fv_c $ list_comb (c, args), mk_union (map fv_arg (dts ~~ args ~~ arg_nos)))) - in - fv_eq - end; - fun fv_eq (i, (_, _, constrs)) binds = map2i (fv_constr i) constrs binds; - val fveqs = map2i fv_eq descr (gather_binds bindsall) - val fv_eqs_perfv = fveqs - val rel_bns_nos = map (fn (_, i, _) => i) rel_bns; - fun filter_fun (_, b) = b mem rel_bns_nos; - val all_fvs = (fv_names ~~ fv_eqs_perfv) ~~ (0 upto (length fv_names - 1)) - val (fv_names_fst, fv_eqs_fst) = apsnd flat (split_list (map fst (filter_out filter_fun all_fvs))) - val (fv_names_snd, fv_eqs_snd) = apsnd flat (split_list (map fst (filter filter_fun all_fvs))) - val fv_eqs_all = fv_eqs_fst @ (flat fv_bn_eqs); - val fv_names_all = fv_names_fst @ fv_bn_names; - val add_binds = map (fn x => (Attrib.empty_binding, x)) -(* Function_Fun.add_fun Function_Common.default_config ... true *) - val (fvs, lthy') = (Primrec.add_primrec - (map (fn s => (Binding.name s, NONE, NoSyn)) fv_names_all) (add_binds fv_eqs_all) lthy) - val (fvs2, lthy'') = - if fv_eqs_snd = [] then (([], []), lthy') else - (Primrec.add_primrec - (map (fn s => (Binding.name s, NONE, NoSyn)) fv_names_snd) (add_binds fv_eqs_snd) lthy') - val ordered_fvs = fv_frees @ fvbns; - val all_fvs = (fst fvs @ fst fvs2, snd fvs @ snd fvs2) -in - ((all_fvs, ordered_fvs), lthy'') -end -*} - -ML {* -fun define_alpha (dt_info : Datatype_Aux.info) bindsall bns fv_frees lthy = -let - val thy = ProofContext.theory_of lthy; - val {descr, sorts, ...} = dt_info; - fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i); -(* TODO: We need a transitive closure, but instead we do this hack considering - all binding functions as recursive or not *) - val nr_bns = - if (non_rec_binds bindsall) = [] then [] - else map (fn (bn, _, _) => bn) bns; - val alpha_names = Datatype_Prop.indexify_names (map (fn (i, _) => - "alpha_" ^ name_of_typ (nth_dtyp i)) descr); - val alpha_types = map (fn (i, _) => nth_dtyp i --> nth_dtyp i --> @{typ bool}) descr; - val alpha_frees = map Free (alpha_names ~~ alpha_types); - (* We assume that a bn is either recursive or not *) - val bns_rec = map (fn (bn, _, _) => not (bn mem nr_bns)) bns; - val (alpha_bn_names, (bn_alpha_bns, alpha_bn_eqs)) = - alpha_bns dt_info alpha_frees bns bns_rec - val alpha_bn_frees = map snd bn_alpha_bns; - val alpha_bn_types = map fastype_of alpha_bn_frees; - - fun alpha_constr ith_dtyp (cname, dts) bindcs = - let - val Ts = map (typ_of_dtyp descr sorts) dts; - val bindslen = length bindcs - val pi_strs_same = replicate bindslen "pi" - val pi_strs = Name.variant_list [] pi_strs_same; - val pis = map (fn ps => Free (ps, @{typ perm})) pi_strs; - val bind_pis_gath = bindcs ~~ pis; - val bind_pis = un_gather_binds_cons bind_pis_gath; - val names = Name.variant_list pi_strs (Datatype_Prop.make_tnames Ts); - val args = map Free (names ~~ Ts); - val names2 = Name.variant_list (pi_strs @ names) (Datatype_Prop.make_tnames Ts); - val args2 = map Free (names2 ~~ Ts); - val c = Const (cname, Ts ---> (nth_dtyp ith_dtyp)); - val alpha = nth alpha_frees ith_dtyp; - val arg_nos = 0 upto (length dts - 1) - fun fv_bind args (NONE, i, _, _) = - if is_rec_type (nth dts i) then (nth fv_frees (body_index (nth dts i))) $ (nth args i) else - if ((is_atom thy) o fastype_of) (nth args i) then mk_single_atom (nth args i) else - if ((is_atom_set thy) o fastype_of) (nth args i) then mk_atom_set (nth args i) else - if ((is_atom_fset thy) o fastype_of) (nth args i) then mk_atom_fset (nth args i) else - (* TODO goes the code for preiously defined nominal datatypes *) - @{term "{} :: atom set"} - | fv_bind args (SOME (f, _), i, _, _) = f $ (nth args i) - fun fv_binds args relevant = mk_union (map (fv_bind args) relevant) - val alpha_rhs = - HOLogic.mk_Trueprop (alpha $ (list_comb (c, args)) $ (list_comb (c, args2))); - fun alpha_arg ((dt, arg_no), (arg, arg2)) = - let - val rel_in_simp_binds = filter (fn ((NONE, i, _, _), _) => i = arg_no | _ => false) bind_pis; - val rel_in_comp_binds = filter (fn ((SOME _, i, _, _), _) => i = arg_no | _ => false) bind_pis; - val rel_has_binds = filter (fn ((NONE, _, j, _), _) => j = arg_no - | ((SOME (_, false), _, j, _), _) => j = arg_no - | _ => false) bind_pis; - val rel_has_rec_binds = filter - (fn ((SOME (_, true), _, j, _), _) => j = arg_no | _ => false) bind_pis; - in - case (rel_in_simp_binds, rel_in_comp_binds, rel_has_binds, rel_has_rec_binds) of - ([], [], [], []) => - if is_rec_type dt then (nth alpha_frees (body_index dt) $ arg $ arg2) - else (HOLogic.mk_eq (arg, arg2)) - | (_, [], [], []) => @{term True} - | ([], [], [], _) => @{term True} - | ([], ((((SOME (bn, is_rec)), _, _, atyp), _) :: _), [], []) => - if not (bns_same rel_in_comp_binds) then error "incompatible bindings for an argument" else - if is_rec then - let - val (rbinds, rpis) = split_list rel_in_comp_binds - val bound_in_nos = map (fn (_, _, i, _) => i) rbinds - val bound_in_ty_nos = map (fn i => body_index (nth dts i)) bound_in_nos; - val bound_args = arg :: map (nth args) bound_in_nos; - val bound_args2 = arg2 :: map (nth args2) bound_in_nos; - val lhs_binds = fv_binds args rbinds - val lhs_arg = foldr1 HOLogic.mk_prod bound_args - val lhs = mk_pair (lhs_binds, lhs_arg); - val rhs_binds = fv_binds args2 rbinds; - val rhs_arg = foldr1 HOLogic.mk_prod bound_args2; - val rhs = mk_pair (rhs_binds, rhs_arg); - val fvs = map (nth fv_frees) ((body_index dt) :: bound_in_ty_nos); - val fv = mk_compound_fv fvs; - val alphas = map (nth alpha_frees) ((body_index dt) :: bound_in_ty_nos); - val alpha = mk_compound_alpha alphas; - val pi = foldr1 (uncurry mk_plus) (distinct (op =) rpis); - val alpha_gen_pre = Const (atyp_const atyp, dummyT) $ lhs $ alpha $ fv $ pi $ rhs; - val alpha_gen = Syntax.check_term lthy alpha_gen_pre - in - alpha_gen - end - else - let - val alpha_bn_const = - nth alpha_bn_frees (find_index (fn (b, _, _) => b = bn) bns) - in - alpha_bn_const $ arg $ arg2 - end - | ([], [], relevant, []) => - let - val (rbinds, rpis) = split_list relevant - val lhs_binds = fv_binds args rbinds - val lhs = mk_pair (lhs_binds, arg); - val rhs_binds = fv_binds args2 rbinds; - val rhs = mk_pair (rhs_binds, arg2); - val alpha = nth alpha_frees (body_index dt); - val fv = nth fv_frees (body_index dt); - val pi = foldr1 (uncurry mk_plus) (distinct (op =) rpis); - val alpha_const = alpha_const_for_binds rbinds; - val alpha_gen_pre = Const (alpha_const, dummyT) $ lhs $ alpha $ fv $ pi $ rhs; - val alpha_gen = Syntax.check_term lthy alpha_gen_pre - in - alpha_gen - end - | _ => error "Fv.alpha: not supported binding structure" - end - val alphas = map alpha_arg (dts ~~ arg_nos ~~ (args ~~ args2)) - val alpha_lhss = mk_conjl alphas - val alpha_lhss_ex = - fold (fn pi_str => fn t => HOLogic.mk_exists (pi_str, @{typ perm}, t)) pi_strs alpha_lhss - val alpha_eq = Logic.mk_implies (HOLogic.mk_Trueprop alpha_lhss_ex, alpha_rhs) - in - alpha_eq - end; - fun alpha_eq (i, (_, _, constrs)) binds = map2i (alpha_constr i) constrs binds; - val alphaeqs = map2i alpha_eq descr (gather_binds bindsall) - val alpha_eqs = flat alphaeqs - val add_binds = map (fn x => (Attrib.empty_binding, x)) - val (alphas, lthy') = (Inductive.add_inductive_i - {quiet_mode = true, verbose = false, alt_name = Binding.empty, - coind = false, no_elim = false, no_ind = false, skip_mono = true, fork_mono = false} - (map2 (fn x => fn y => ((Binding.name x, y), NoSyn)) (alpha_names @ alpha_bn_names) - (alpha_types @ alpha_bn_types)) [] - (add_binds (alpha_eqs @ flat alpha_bn_eqs)) [] lthy) -in - (alphas, lthy') -end -*} - - -ML {* -fun define_fv_alpha_export dt binds bns ctxt = -let - val (((fv_ts_loc, fv_def_loc), ord_fv_ts_loc), ctxt') = - define_fv dt binds bns ctxt; - val (alpha, ctxt'') = - define_alpha dt binds bns fv_ts_loc ctxt'; - val alpha_ts_loc = #preds alpha - val alpha_induct_loc = #induct alpha - val alpha_intros_loc = #intrs alpha; - val alpha_cases_loc = #elims alpha - val morphism = ProofContext.export_morphism ctxt'' ctxt; - val fv_ts = map (Morphism.term morphism) fv_ts_loc; - val ord_fv_ts = map (Morphism.term morphism) ord_fv_ts_loc; - val fv_def = Morphism.fact morphism fv_def_loc; - val alpha_ts = map (Morphism.term morphism) alpha_ts_loc; - val alpha_induct = Morphism.thm morphism alpha_induct_loc; - val alpha_intros = Morphism.fact morphism alpha_intros_loc - val alpha_cases = Morphism.fact morphism alpha_cases_loc -in - ((((fv_ts, ord_fv_ts), fv_def), ((alpha_ts, alpha_intros), (alpha_cases, alpha_induct))), ctxt'') -end; -*} - -end