diff -r e1e2ca92760b -r a8fc346deda3 Nominal/Ex/Typing.thy --- a/Nominal/Ex/Typing.thy Wed Jan 05 16:51:27 2011 +0000 +++ b/Nominal/Ex/Typing.thy Wed Jan 05 17:33:43 2011 +0000 @@ -20,498 +20,6 @@ thm lam.fv_bn_eqvt thm lam.size_eqvt -ML {* -fun mk_cplus p q = Thm.capply (Thm.capply @{cterm "plus::perm \ perm \ perm"} p) q - -fun mk_cminus p = Thm.capply @{cterm "uminus::perm \ perm"} p - - -fun minus_permute_intro_tac p = - rtac (Drule.instantiate' [] [SOME (mk_cminus p)] @{thm permute_boolE}) - -fun minus_permute_elim p thm = - thm RS (Drule.instantiate' [] [NONE, SOME (mk_cminus p)] @{thm permute_boolI}) -*} - -ML {* -fun real_head_of (@{term Trueprop} $ t) = real_head_of t - | real_head_of (Const ("==>", _) $ _ $ t) = real_head_of t - | real_head_of (Const (@{const_name all}, _) $ Abs (_, _, t)) = real_head_of t - | real_head_of (Const (@{const_name All}, _) $ Abs (_, _, t)) = real_head_of t - | real_head_of (Const ("HOL.induct_forall", _) $ Abs (_, _, t)) = real_head_of t - | real_head_of t = head_of t -*} - -ML {* -fun mk_vc_compat (avoid, avoid_trm) prems concl_args params = - let - val vc_goal = concl_args - |> HOLogic.mk_tuple - |> mk_fresh_star avoid_trm - |> HOLogic.mk_Trueprop - |> (curry Logic.list_implies) prems - |> (curry list_all_free) params - val finite_goal = avoid_trm - |> mk_finite - |> HOLogic.mk_Trueprop - |> (curry Logic.list_implies) prems - |> (curry list_all_free) params - in - if null avoid then [] else [vc_goal, finite_goal] - end -*} - -ML {* -fun map_term prop f trm = - if prop trm - then f trm - else case trm of - (t1 $ t2) => map_term prop f t1 $ map_term prop f t2 - | Abs (x, T, t) => Abs (x, T, map_term prop f t) - | _ => trm -*} - -ML {* -fun add_p_c p (c, c_ty) trm = - let - val (P, args) = strip_comb trm - val (P_name, P_ty) = dest_Free P - val (ty_args, bool) = strip_type P_ty - val args' = map (mk_perm p) args - in - list_comb (Free (P_name, (c_ty :: ty_args) ---> bool), c :: args') - |> (fn t => HOLogic.all_const c_ty $ lambda c t ) - |> (fn t => HOLogic.all_const @{typ perm} $ lambda p t) - end -*} - -ML {* -fun induct_forall_const T = Const ("HOL.induct_forall", (T --> @{typ bool}) --> @{typ bool}) -fun mk_induct_forall (a, T) t = induct_forall_const T $ Abs (a, T, t) -*} - -ML {* -fun add_c_prop qnt Ps (c, c_name, c_ty) trm = - let - fun add t = - let - val (P, args) = strip_comb t - val (P_name, P_ty) = dest_Free P - val (ty_args, bool) = strip_type P_ty - val args' = args - |> qnt ? map (incr_boundvars 1) - in - list_comb (Free (P_name, (c_ty :: ty_args) ---> bool), c :: args') - |> qnt ? mk_induct_forall (c_name, c_ty) - end - in - map_term (member (op =) Ps o head_of) add trm - end -*} - -ML {* -fun prep_prem Ps c_name c_ty (avoid, avoid_trm) (params, prems, concl) = - let - val prems' = prems - |> map (incr_boundvars 1) - |> map (add_c_prop true Ps (Bound 0, c_name, c_ty)) - - val avoid_trm' = avoid_trm - |> (curry list_abs_free) (params @ [(c_name, c_ty)]) - |> strip_abs_body - |> (fn t => mk_fresh_star_ty c_ty t (Bound 0)) - |> HOLogic.mk_Trueprop - - val prems'' = - if null avoid - then prems' - else avoid_trm' :: prems' - - val concl' = concl - |> incr_boundvars 1 - |> add_c_prop false Ps (Bound 0, c_name, c_ty) - in - mk_full_horn (params @ [(c_name, c_ty)]) prems'' concl' - end -*} - - -ML {* -fun same_name (Free (a1, _), Free (a2, _)) = (a1 = a2) - | same_name (Var (a1, _), Var (a2, _)) = (a1 = a2) - | same_name (Const (a1, _), Const (a2, _)) = (a1 = a2) - | same_name _ = false -*} - -ML {* -fun map7 _ [] [] [] [] [] [] [] = [] - | map7 f (x :: xs) (y :: ys) (z :: zs) (u :: us) (v :: vs) (r :: rs) (s :: ss) = - f x y z u v r s :: map7 f xs ys zs us vs rs ss -*} - -ML {* -(* local abbreviations *) -fun eqvt_stac ctxt = Nominal_Permeq.eqvt_strict_tac ctxt @{thms permute_minus_cancel} [] -fun eqvt_srule ctxt = Nominal_Permeq.eqvt_strict_rule ctxt @{thms permute_minus_cancel} [] -*} - -ML {* -val all_elims = - let - fun spec' ct = Drule.instantiate' [SOME (ctyp_of_term ct)] [NONE, SOME ct] @{thm spec} - in - fold (fn ct => fn th => th RS spec' ct) - end -*} - -ML {* -fun helper_tac flag prm p ctxt = - Subgoal.SUBPROOF (fn {context, prems, ...} => - let - val prems' = prems - |> map (minus_permute_elim p) - |> map (eqvt_srule context) - - val prm' = (prems' MRS prm) - |> flag ? (all_elims [p]) - |> flag ? (eqvt_srule context) - - val _ = tracing ("prm':" ^ @{make_string} prm') - in - print_tac "start helper" - THEN asm_full_simp_tac (HOL_ss addsimps (prm' :: @{thms induct_forall_def})) 1 - THEN print_tac "final helper" - end) ctxt -*} - -ML {* -fun non_binder_tac prem intr_cvars Ps ctxt = - Subgoal.SUBPROOF (fn {context, params, prems, ...} => - let - val thy = ProofContext.theory_of context - val (prms, p, _) = split_last2 (map snd params) - val prm_tys = map (fastype_of o term_of) prms - val cperms = map (cterm_of thy o perm_const) prm_tys - val p_prms = map2 (fn ct1 => fn ct2 => Thm.mk_binop ct1 p ct2) cperms prms - val prem' = cterm_instantiate (intr_cvars ~~ p_prms) prem - - (* for inductive-premises*) - fun tac1 prm = helper_tac true prm p context - - (* for non-inductive premises *) - fun tac2 prm = - EVERY' [ minus_permute_intro_tac p, - eqvt_stac context, - helper_tac false prm p context ] - - fun select prm (t, i) = - (if member same_name Ps (real_head_of t) then tac1 prm else tac2 prm) i - in - EVERY1 [eqvt_stac ctxt, rtac prem', RANGE (map (SUBGOAL o select) prems) ] - end) ctxt -*} - - -ML {* -fun fresh_thm ctxt user_thm p c concl_args avoid_trm = - let - val conj1 = - mk_fresh_star (mk_perm (Bound 0) (mk_perm p avoid_trm)) c - val conj2 = - mk_fresh_star_ty @{typ perm} (mk_supp (HOLogic.mk_tuple (map (mk_perm p) concl_args))) (Bound 0) - val fresh_goal = mk_exists ("q", @{typ perm}) (HOLogic.mk_conj (conj1, conj2)) - |> HOLogic.mk_Trueprop - - val ss = @{thms finite_supp supp_Pair finite_Un permute_finite} @ - @{thms fresh_star_Pair fresh_star_permute_iff} - val simp = asm_full_simp_tac (HOL_ss addsimps ss) - in - Goal.prove ctxt [] [] fresh_goal - (K (HEADGOAL (rtac @{thm at_set_avoiding2} - THEN_ALL_NEW EVERY' [cut_facts_tac user_thm, REPEAT o etac @{thm conjE}, simp]))) - end -*} - -ML {* -val supp_perm_eq' = - @{lemma "supp (p \ x) \* q ==> p \ x == (q + p) \ x" by (simp add: supp_perm_eq)} -val fresh_star_plus = - @{lemma "(q \ (p \ x)) \* c ==> ((q + p) \ x) \* c" by (simp add: permute_plus)} -*} - -ML {* -fun binder_tac prem intr_cvars param_trms Ps user_thm avoid avoid_trm concl_args ctxt = - Subgoal.FOCUS (fn {context = ctxt, params, prems, concl, ...} => - let - val thy = ProofContext.theory_of ctxt - val (prms, p, c) = split_last2 (map snd params) - val prm_trms = map term_of prms - val prm_tys = map fastype_of prm_trms - - val avoid_trm' = subst_free (param_trms ~~ prm_trms) avoid_trm - val concl_args' = map (subst_free (param_trms ~~ prm_trms)) concl_args - - val user_thm' = map (cterm_instantiate (intr_cvars ~~ prms)) user_thm - |> map (full_simplify (HOL_ss addsimps (@{thm fresh_star_Pair}::prems))) - - val fthm = fresh_thm ctxt user_thm' (term_of p) (term_of c) concl_args' avoid_trm' - - val (([(_, q)], fprop :: fresh_eqs), ctxt') = Obtain.result - (K (EVERY1 [etac @{thm exE}, - full_simp_tac (HOL_basic_ss addsimps @{thms supp_Pair fresh_star_Un}), - REPEAT o etac @{thm conjE}, - dtac fresh_star_plus, - REPEAT o dtac supp_perm_eq'])) [fthm] ctxt - - val expand_conv = Conv.try_conv (Conv.rewrs_conv fresh_eqs) - fun expand_conv_bot ctxt = Conv.bottom_conv (K expand_conv) ctxt - - val cperms = map (cterm_of thy o perm_const) prm_tys - val qp_prms = map2 (fn ct1 => fn ct2 => Thm.mk_binop ct1 (mk_cplus q p) ct2) cperms prms - val prem' = cterm_instantiate (intr_cvars ~~ qp_prms) prem - - val fprop' = eqvt_srule ctxt' fprop - val tac_fresh = simp_tac (HOL_basic_ss addsimps [fprop']) - - (* for inductive-premises*) - fun tac1 prm = helper_tac true prm (mk_cplus q p) ctxt' - - (* for non-inductive premises *) - fun tac2 prm = - EVERY' [ minus_permute_intro_tac (mk_cplus q p), - eqvt_stac ctxt, - helper_tac false prm (mk_cplus q p) ctxt' ] - - fun select prm (t, i) = - (if member same_name Ps (real_head_of t) then tac1 prm else tac2 prm) i - - val _ = tracing ("fthm:\n" ^ @{make_string} fthm) - val _ = tracing ("fr_eqs:\n" ^ cat_lines (map @{make_string} fresh_eqs)) - val _ = tracing ("fprop:\n" ^ @{make_string} fprop) - val _ = tracing ("fprop':\n" ^ @{make_string} fprop') - val _ = tracing ("fperm:\n" ^ @{make_string} q) - val _ = tracing ("prem':\n" ^ @{make_string} prem') - - val side_thm = Goal.prove ctxt' [] [] (term_of concl) - (fn {context, ...} => - EVERY1 [ CONVERSION (expand_conv_bot context), - eqvt_stac context, - rtac prem', - RANGE (tac_fresh :: map (SUBGOAL o select) prems), - K (print_tac "GOAL") ]) - |> singleton (ProofContext.export ctxt' ctxt) - in - rtac side_thm 1 - end) ctxt -*} - -ML {* -fun case_tac ctxt Ps avoid avoid_trm intr_cvars param_trms prem user_thm concl_args = - let - val tac1 = non_binder_tac prem intr_cvars Ps ctxt - val tac2 = binder_tac prem intr_cvars param_trms Ps user_thm avoid avoid_trm concl_args ctxt - in - EVERY' [ rtac @{thm allI}, rtac @{thm allI}, if null avoid then tac1 else tac2 ] - end -*} - -ML {* -fun prove_sinduct_tac raw_induct user_thms Ps avoids avoid_trms intr_cvars param_trms concl_args - {prems, context} = - let - val cases_tac = - map7 (case_tac context Ps) avoids avoid_trms intr_cvars param_trms prems user_thms concl_args - in - EVERY1 [ DETERM o rtac raw_induct, RANGE cases_tac ] - end -*} - -ML {* -val normalise = @{lemma "(Q --> (!p c. P p c)) ==> (!!c. Q ==> P (0::perm) c)" by simp} -*} - -ML {* Local_Theory.note *} - -ML {* -fun prove_strong_inductive pred_names rule_names avoids raw_induct intrs ctxt = - let - val thy = ProofContext.theory_of ctxt - val ((_, [raw_induct']), ctxt') = Variable.import true [raw_induct] ctxt - - val (ind_prems, ind_concl) = raw_induct' - |> prop_of - |> Logic.strip_horn - |>> map strip_full_horn - val params = map (fn (x, _, _) => x) ind_prems - val param_trms = (map o map) Free params - - val intr_vars_tys = map (fn t => rev (Term.add_vars (prop_of t) [])) intrs - val intr_vars = (map o map) fst intr_vars_tys - val intr_vars_substs = map2 (curry (op ~~)) intr_vars param_trms - val intr_cvars = (map o map) (cterm_of thy o Var) intr_vars_tys - - val (intr_prems, intr_concls) = intrs - |> map prop_of - |> map2 subst_Vars intr_vars_substs - |> map Logic.strip_horn - |> split_list - - val intr_concls_args = map (snd o strip_comb o HOLogic.dest_Trueprop) intr_concls - - val avoid_trms = avoids - |> (map o map) (setify ctxt') - |> map fold_union - - val vc_compat_goals = - map4 mk_vc_compat (avoids ~~ avoid_trms) intr_prems intr_concls_args params - - val ([c_name, a, p], ctxt'') = Variable.variant_fixes ["c", "'a", "p"] ctxt' - val c_ty = TFree (a, @{sort fs}) - val c = Free (c_name, c_ty) - val p = Free (p, @{typ perm}) - - val (preconds, ind_concls) = ind_concl - |> HOLogic.dest_Trueprop - |> HOLogic.dest_conj - |> map HOLogic.dest_imp - |> split_list - - val Ps = map (fst o strip_comb) ind_concls - - val ind_concl' = ind_concls - |> map (add_p_c p (c, c_ty)) - |> (curry (op ~~)) preconds - |> map HOLogic.mk_imp - |> fold_conj - |> HOLogic.mk_Trueprop - - val ind_prems' = ind_prems - |> map2 (prep_prem Ps c_name c_ty) (avoids ~~ avoid_trms) - - fun after_qed ctxt_outside user_thms ctxt = - let - val strong_ind_thms = Goal.prove ctxt [] ind_prems' ind_concl' - (prove_sinduct_tac raw_induct user_thms Ps avoids avoid_trms intr_cvars param_trms intr_concls_args) - |> singleton (ProofContext.export ctxt ctxt_outside) - |> Datatype_Aux.split_conj_thm - |> map (fn thm => thm RS normalise) - |> map (asm_full_simplify (HOL_basic_ss addsimps @{thms permute_zero induct_rulify})) - |> map (Drule.rotate_prems (length ind_prems')) - |> map zero_var_indexes - - val qualified_thm_name = pred_names - |> map Long_Name.base_name - |> space_implode "_" - |> (fn s => Binding.qualify false s (Binding.name "strong_induct")) - - val attrs = - [ Attrib.internal (K (Rule_Cases.consumes 1)), - Attrib.internal (K (Rule_Cases.case_names rule_names)) ] - val _ = tracing ("RESULTS\n" ^ cat_lines (map (Syntax.string_of_term ctxt o prop_of) strong_ind_thms)) - val _ = tracing ("rule_names: " ^ commas rule_names) - val _ = tracing ("pred_names: " ^ commas pred_names) - in - ctxt - |> Local_Theory.note ((qualified_thm_name, attrs), strong_ind_thms) - |> snd - end - in - Proof.theorem NONE (after_qed ctxt) ((map o map) (rpair []) vc_compat_goals) ctxt'' - end -*} - -ML {* -fun prove_strong_inductive_cmd (pred_name, avoids) ctxt = - let - val thy = ProofContext.theory_of ctxt; - val ({names, ...}, {raw_induct, intrs, ...}) = - Inductive.the_inductive ctxt (Sign.intern_const thy pred_name); - - val rule_names = - hd names - |> the o Induct.lookup_inductP ctxt - |> fst o Rule_Cases.get - |> map fst - - val _ = (case duplicates (op = o pairself fst) avoids of - [] => () - | xs => error ("Duplicate case names: " ^ commas_quote (map fst xs))) - - val _ = (case subtract (op =) rule_names (map fst avoids) of - [] => () - | xs => error ("No such case(s) in inductive definition: " ^ commas_quote xs)) - - val avoids_ordered = order_default (op =) [] rule_names avoids - - fun read_avoids avoid_trms intr = - let - (* fixme hack *) - val (((_, ctrms), _), ctxt') = Variable.import true [intr] ctxt - val trms = map (term_of o snd) ctrms - val ctxt'' = fold Variable.declare_term trms ctxt' - in - map (Syntax.read_term ctxt'') avoid_trms - end - - val avoid_trms = map2 read_avoids avoids_ordered intrs - in - prove_strong_inductive names rule_names avoid_trms raw_induct intrs ctxt - end -*} - -ML {* -(* outer syntax *) -local - structure P = Parse; - structure S = Scan - - val _ = Keyword.keyword "avoids" - - val single_avoid_parser = - P.name -- (P.$$$ ":" |-- P.and_list1 P.term) - - val avoids_parser = - S.optional (P.$$$ "avoids" |-- P.enum1 "|" single_avoid_parser) [] - - val main_parser = P.xname -- avoids_parser -in - val _ = - Outer_Syntax.local_theory_to_proof "nominal_inductive" - "prove strong induction theorem for inductive predicate involving nominal datatypes" - Keyword.thy_goal (main_parser >> prove_strong_inductive_cmd) -end -*} - -inductive - Acc :: "('a::pt \ 'a \ bool) \ 'a \ bool" -where - AccI: "(\y. R y x \ Acc R y) \ Acc R x" - -(* -equivariance Acc -*) - -lemma Acc_eqvt [eqvt]: - fixes p::"perm" - assumes a: "Acc R x" - shows "Acc (p \ R) (p \ x)" -using a -apply(induct) -apply(rule AccI) -apply(rotate_tac 1) -apply(drule_tac x="-p \ y" in meta_spec) -apply(simp) -apply(drule meta_mp) -apply(rule_tac p="p" in permute_boolE) -apply(perm_simp add: permute_minus_cancel) -apply(assumption) -apply(assumption) -done - - -nominal_inductive Acc . - -thm Acc.strong_induct section {* Typing *} @@ -527,8 +35,6 @@ apply (simp_all add: ty.fresh pure_fresh) done - - inductive valid :: "(name \ ty) list \ bool" where @@ -545,16 +51,13 @@ thm typing.intros thm typing.induct - - equivariance valid equivariance typing nominal_inductive typing avoids t_Lam: "x" - apply - - apply(simp_all add: fresh_star_def ty_fresh lam.fresh)? - done + by (simp_all add: fresh_star_def ty_fresh lam.fresh) + thm typing.strong_induct @@ -611,6 +114,34 @@ done +inductive + Acc :: "('a::pt \ 'a \ bool) \ 'a \ bool" +where + AccI: "(\y. R y x \ Acc R y) \ Acc R x" + + +lemma Acc_eqvt [eqvt]: + fixes p::"perm" + assumes a: "Acc R x" + shows "Acc (p \ R) (p \ x)" +using a +apply(induct) +apply(rule AccI) +apply(rotate_tac 1) +apply(drule_tac x="-p \ y" in meta_spec) +apply(simp) +apply(drule meta_mp) +apply(rule_tac p="p" in permute_boolE) +apply(perm_simp add: permute_minus_cancel) +apply(assumption) +apply(assumption) +done + + +nominal_inductive Acc . + +thm Acc.strong_induct + end