diff -r fa37c2a33812 -r d7e8b9b78e28 Nominal/Ex/NBE.thy --- a/Nominal/Ex/NBE.thy Wed Jul 13 09:47:58 2011 +0100 +++ b/Nominal/Ex/NBE.thy Fri Jul 15 22:48:37 2011 +0100 @@ -30,44 +30,16 @@ nominal_primrec evals :: "env \ lam \ sem" and - evals_aux :: "sem \ lam \ env \ sem" + evals_aux :: "sem \ sem \ sem" where "evals ENil (Var x) = N (V x)" | "evals (ECons tail y v) (Var x) = (if x = y then v else evals tail (Var x))" -| "evals env (Lam [x]. t) = L env x t" -| "evals env (App t1 t2) = evals_aux (evals env t1) t2 env" -| "evals_aux (L cenv x t) t2 env = evals (ECons cenv x (evals env t2)) t" -| "evals_aux (N n) t2 env = N (A n (evals env t2))" -apply(subgoal_tac "\p x y. evals_evals_aux_graph x y \ evals_evals_aux_graph (p \ x) (p \ y)") -apply(simp add: eqvt_def) -apply(simp add: permute_fun_def) -apply(rule allI) -apply(rule ext) -apply(rule ext) -apply(rule iffI) -apply(drule_tac x="p" in meta_spec) -apply(drule_tac x="- p \ x" in meta_spec) -apply(drule_tac x="- p \ xa" in meta_spec) -apply(simp add: permute_bool_def) -apply(simp add: permute_bool_def) -apply(erule evals_evals_aux_graph.induct) +| "atom x \ env \ evals env (Lam [x]. t) = L env x t" +| "evals env (App t1 t2) = evals_aux (evals env t1) (evals env t2)" +| "evals_aux (L cenv x t) t' = evals (ECons cenv x t') t" +| "evals_aux (N n) t' = N (A n t')" +apply(simp add: eqvt_def evals_evals_aux_graph_def) apply(perm_simp) -apply(rule evals_evals_aux_graph.intros) -apply(perm_simp) -apply(rule evals_evals_aux_graph.intros) -apply(simp) -apply(perm_simp) -apply(rule evals_evals_aux_graph.intros) -apply(perm_simp) -apply(rule evals_evals_aux_graph.intros) -apply(simp) -apply(simp) -apply(perm_simp) -apply(rule evals_evals_aux_graph.intros) -apply(simp) -apply(simp) -apply(perm_simp) -apply(rule evals_evals_aux_graph.intros) apply(simp) apply (rule TrueI) --"completeness" @@ -76,11 +48,17 @@ apply(case_tac a) apply(simp) apply(case_tac aa rule: sem_neu_env.exhaust(3)) -apply(simp) +apply(simp add: sem_neu_env.fresh) apply(case_tac b rule: lam.exhaust) apply(metis)+ -apply(case_tac b rule: lam.exhaust) +apply(case_tac aa rule: sem_neu_env.exhaust(3)) +apply(rule_tac y="b" and c="env" in lam.strong_exhaust) apply(metis)+ +apply(simp add: fresh_star_def) +apply(simp) +apply(rule_tac y="b" and c="ECons env name sem" in lam.strong_exhaust) +apply(metis)+ +apply(simp add: fresh_star_def) apply(simp) apply(case_tac b) apply(simp) @@ -94,16 +72,23 @@ apply(simp) apply(simp) apply (simp add: meta_eq_to_obj_eq[OF evals_def, symmetric, unfolded fun_eq_iff]) -apply (subgoal_tac "eqvt_at (\(a, b). evals a b) (ECons cenv x (evals enva t2a), t)") -apply (subgoal_tac "eqvt_at (\(a, b). evals a b) (enva, t2a)") -apply (subgoal_tac "eqvt_at (\(a, b). evals a b) (ECons cenva xa (evals enva t2a), ta)") -apply (thin_tac "eqvt_at evals_evals_aux_sumC (Inl (ECons cenv x (evals enva t2a), t))") -apply (thin_tac "eqvt_at evals_evals_aux_sumC (Inl (enva, t2a))") -apply (thin_tac "eqvt_at evals_evals_aux_sumC (Inl (ECons cenva xa (evals enva t2a), ta))") +apply (subgoal_tac "eqvt_at (\(a, b). evals a b) (ECons cenv x t'a, t)") +apply (subgoal_tac "eqvt_at (\(a, b). evals a b) (ECons cenva xa t'a, ta)") +apply (thin_tac "eqvt_at evals_evals_aux_sumC (Inl (ECons cenv x t'a, t))") +apply (thin_tac "eqvt_at evals_evals_aux_sumC (Inl (ECons cenva xa t'a, ta))") apply(erule conjE)+ defer apply (simp_all add: eqvt_at_def evals_def)[3] -apply(simp) +apply(simp add: sem_neu_env.alpha_refl) +apply(erule conjE)+ +apply(erule_tac c="(env, enva)" in Abs_lst1_fcb2) +apply(simp add: Abs_fresh_iff) +apply(simp add: fresh_star_def) +apply(perm_simp) +apply(simp add: fresh_star_Pair perm_supp_eq) +apply(perm_simp) +apply(simp add: fresh_star_Pair perm_supp_eq) +thm Abs_lst1_fcb2' sorry (* can probably not proved by a trivial size argument *) @@ -111,7 +96,7 @@ lemma [eqvt]: shows "(p \ evals env t) = evals (p \ env) (p \ t)" - and "(p \ evals_aux v t env) = evals_aux (p \ v) (p \ t) (p \ env)" + and "(p \ evals_aux v s) = evals_aux (p \ v) (p \ s)" sorry (* fixme: should be a provided lemma *) @@ -124,8 +109,8 @@ lemma test: fixes env::"env" shows "supp (evals env t) \ (supp t - set (bn env)) \ (fv_bn env)" - and "supp (evals_aux s t env) \ (supp s) \ (fv_bn env) \ (supp (t) - set (bn env))" -apply(induct env t and s t env rule: evals_evals_aux.induct) + and "supp (evals_aux s v) \ (supp s) \ (supp v)" +apply(induct env t and s v rule: evals_evals_aux.induct) apply(simp add: sem_neu_env.supp lam.supp supp_Nil sem_neu_env.bn_defs) apply(simp add: sem_neu_env.supp lam.supp supp_Nil supp_Cons sem_neu_env.bn_defs) apply(rule conjI) @@ -141,12 +126,8 @@ apply(simp add: lam.supp sem_neu_env.supp) apply(blast) apply(simp add: sem_neu_env.supp sem_neu_env.bn_defs) -prefer 2 +apply(blast) apply(simp add: sem_neu_env.supp) -apply(rule conjI) -apply(blast) -apply(blast) -apply(blast) done @@ -280,15 +261,18 @@ apply(perm_simp) apply(simp add: flip_fresh_fresh fresh_Pair) apply(drule sym) +(* HERE *) +apply(rotate_tac 9) +apply(drule sym) apply(rotate_tac 9) apply(drule trans) apply(rule sym) -(* HERE *) - apply(rule_tac p="p" in supp_perm_eq) +apply(assumption) apply(simp) apply(perm_simp) -apply(simp add: Abs_eq_iff2 alphas) +apply(simp (no_asm_use) add: Abs_eq_iff2 alphas) +apply(erule conjE | erule exE)+ apply(clarify) apply(rule trans) apply(rule sym)