diff -r 98e84b56543f -r d73fa7a3e04b Nominal/FSet.thy --- a/Nominal/FSet.thy Fri Oct 15 15:58:48 2010 +0100 +++ b/Nominal/FSet.thy Fri Oct 15 16:01:03 2010 +0100 @@ -57,9 +57,9 @@ definition - fminus_raw :: "'a list \ 'a list \ 'a list" + diff_list :: "'a list \ 'a list \ 'a list" where - "fminus_raw xs ys \ [x \ xs. x\set ys]" + "diff_list xs ys \ [x \ xs. x\set ys]" definition @@ -83,9 +83,9 @@ shows "set (finter_raw xs ys) = set xs \ set ys" by (induct xs) (auto simp add: memb_def) -lemma set_fminus_raw[simp]: - shows "set (fminus_raw xs ys) = (set xs - set ys)" - by (auto simp add: fminus_raw_def) +lemma set_diff_list[simp]: + shows "set (diff_list xs ys) = (set xs - set ys)" + by (auto simp add: diff_list_def) section {* Quotient composition lemmas *} @@ -208,8 +208,8 @@ shows "(op = ===> op \ ===> op \) removeAll removeAll" by simp -lemma fminus_raw_rsp[quot_respect]: - shows "(op \ ===> op \ ===> op \) fminus_raw fminus_raw" +lemma diff_list_rsp[quot_respect]: + shows "(op \ ===> op \ ===> op \) diff_list diff_list" by simp lemma card_list_rsp[quot_respect]: @@ -346,7 +346,7 @@ quotient_definition "minus :: 'a fset \ 'a fset \ 'a fset" is - "fminus_raw :: 'a list \ 'a list \ 'a list" + "diff_list :: 'a list \ 'a list \ 'a list" lemma append_finter_raw_distrib: "x @ (finter_raw y z) \ finter_raw (x @ y) (x @ z)" @@ -720,7 +720,7 @@ (* FIXME: is this in any case a useful lemma *) lemma fin_mdef: shows "x |\| F \ x |\| (F - {|x|}) \ F = finsert x (F - {|x|})" - by (descending) (auto simp add: memb_def fminus_raw_def) + by (descending) (auto simp add: memb_def diff_list_def) subsection {* fset *} @@ -756,7 +756,7 @@ lemma fminus_set [simp]: shows "fset (xs - ys) = fset xs - fset ys" - by (lifting set_fminus_raw) + by (lifting set_diff_list) subsection {* funion *}