diff -r 0b15b83ded4a -r c96e007b512f Quot/QuotProd.thy --- a/Quot/QuotProd.thy Tue Jan 26 01:00:35 2010 +0100 +++ b/Quot/QuotProd.thy Tue Jan 26 01:42:46 2010 +0100 @@ -1,11 +1,16 @@ +(* Title: QuotProd.thy + Author: Cezary Kaliszyk and Christian Urban +*) theory QuotProd imports QuotMain begin +section {* Quotient infrastructure for product type *} + fun prod_rel where - "prod_rel R1 R2 = (\(a,b) (c,d). R1 a c \ R2 b d)" + "prod_rel R1 R2 = (\(a, b) (c, d). R1 a c \ R2 b d)" declare [[map * = (prod_fun, prod_rel)]] @@ -14,37 +19,40 @@ assumes a: "equivp R1" assumes b: "equivp R2" shows "equivp (prod_rel R1 R2)" -unfolding equivp_reflp_symp_transp reflp_def symp_def transp_def -apply(auto simp add: equivp_reflp[OF a] equivp_reflp[OF b]) -apply(simp only: equivp_symp[OF a]) -apply(simp only: equivp_symp[OF b]) -using equivp_transp[OF a] apply blast -using equivp_transp[OF b] apply blast -done + apply(rule equivpI) + unfolding reflp_def symp_def transp_def + apply(simp_all add: split_paired_all) + apply(blast intro: equivp_reflp[OF a] equivp_reflp[OF b]) + apply(blast intro: equivp_symp[OF a] equivp_symp[OF b]) + apply(blast intro: equivp_transp[OF a] equivp_transp[OF b]) + done lemma prod_quotient[quot_thm]: assumes q1: "Quotient R1 Abs1 Rep1" assumes q2: "Quotient R2 Abs2 Rep2" shows "Quotient (prod_rel R1 R2) (prod_fun Abs1 Abs2) (prod_fun Rep1 Rep2)" -unfolding Quotient_def -using q1 q2 -apply (simp add: Quotient_abs_rep Quotient_abs_rep Quotient_rel_rep Quotient_rel_rep) -using Quotient_rel[OF q1] Quotient_rel[OF q2] -by blast + unfolding Quotient_def + apply(simp add: split_paired_all) + apply(simp add: Quotient_abs_rep[OF q1] Quotient_rel_rep[OF q1]) + apply(simp add: Quotient_abs_rep[OF q2] Quotient_rel_rep[OF q2]) + using q1 q2 + unfolding Quotient_def + apply(blast) + done -lemma pair_rsp[quot_respect]: +lemma Pair_rsp[quot_respect]: assumes q1: "Quotient R1 Abs1 Rep1" assumes q2: "Quotient R2 Abs2 Rep2" shows "(R1 ===> R2 ===> prod_rel R1 R2) Pair Pair" by simp -lemma pair_prs[quot_preserve]: +lemma Pair_prs[quot_preserve]: assumes q1: "Quotient R1 Abs1 Rep1" assumes q2: "Quotient R2 Abs2 Rep2" shows "(Rep1 ---> Rep2 ---> (prod_fun Abs1 Abs2)) Pair = Pair" -apply(simp add: expand_fun_eq) -apply(simp add: Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]) -done + apply(simp add: expand_fun_eq) + apply(simp add: Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]) + done lemma fst_rsp[quot_respect]: assumes "Quotient R1 Abs1 Rep1" @@ -56,9 +64,9 @@ assumes q1: "Quotient R1 Abs1 Rep1" assumes q2: "Quotient R2 Abs2 Rep2" shows "(prod_fun Rep1 Rep2 ---> Abs1) fst = fst" -apply(simp add: expand_fun_eq) -apply(simp add: Quotient_abs_rep[OF q1]) -done + apply(simp add: expand_fun_eq) + apply(simp add: Quotient_abs_rep[OF q1]) + done lemma snd_rsp[quot_respect]: assumes "Quotient R1 Abs1 Rep1" @@ -70,20 +78,18 @@ assumes q1: "Quotient R1 Abs1 Rep1" assumes q2: "Quotient R2 Abs2 Rep2" shows "(prod_fun Rep1 Rep2 ---> Abs2) snd = snd" -apply(simp add: expand_fun_eq) -apply(simp add: Quotient_abs_rep[OF q2]) -done + apply(simp add: expand_fun_eq) + apply(simp add: Quotient_abs_rep[OF q2]) + done lemma prod_fun_id[id_simps]: shows "prod_fun id id \ id" - by (rule eq_reflection) - (simp add: prod_fun_def) + by (rule eq_reflection) (simp add: prod_fun_def) lemma prod_rel_eq[id_simps]: shows "prod_rel (op =) (op =) \ (op =)" apply (rule eq_reflection) - apply (rule ext)+ - apply auto + apply (simp add: expand_fun_eq) done end