diff -r a37c65fe10de -r c8c2f83fadb4 Nominal/TySch.thy --- a/Nominal/TySch.thy Fri Mar 19 09:40:34 2010 +0100 +++ b/Nominal/TySch.thy Fri Mar 19 09:40:57 2010 +0100 @@ -10,60 +10,6 @@ ML {* val _ = cheat_fv_eqvt := false *} ML {* val _ = cheat_alpha_eqvt := false *} -lemma permute_rsp_fset[quot_respect]: - "(op = ===> op \ ===> op \) permute permute" - apply (simp add: eqvts[symmetric]) - apply clarify - apply (subst permute_minus_cancel(1)[symmetric, of "xb"]) - apply (subst mem_eqvt[symmetric]) - apply (subst (2) permute_minus_cancel(1)[symmetric, of "xb"]) - apply (subst mem_eqvt[symmetric]) - apply (erule_tac x="- x \ xb" in allE) - apply simp - done - -instantiation FSet.fset :: (pt) pt -begin - -term "permute :: perm \ 'a list \ 'a list" - -quotient_definition - "permute_fset :: perm \ 'a fset \ 'a fset" -is - "permute :: perm \ 'a list \ 'a list" - -lemma permute_list_zero: "0 \ (x :: 'a list) = x" -by (rule permute_zero) - -lemma permute_fset_zero: "0 \ (x :: 'a fset) = x" -by (lifting permute_list_zero) - -lemma permute_list_plus: "(p + q) \ (x :: 'a list) = p \ q \ x" -by (rule permute_plus) - -lemma permute_fset_plus: "(p + q) \ (x :: 'a fset) = p \ q \ x" -by (lifting permute_list_plus) - -instance -apply default -apply (rule permute_fset_zero) -apply (rule permute_fset_plus) -done - -end - -lemma fset_to_set_eqvt[eqvt]: "pi \ (fset_to_set x) = fset_to_set (pi \ x)" -by (lifting set_eqvt) - -lemma map_eqvt[eqvt]: "pi \ (map f l) = map (pi \ f) (pi \ l)" -apply (induct l) -apply (simp_all) -apply (simp only: eqvt_apply) -done - -lemma fmap_eqvt[eqvt]: "pi \ (fmap f l) = fmap (pi \ f) (pi \ l)" -by (lifting map_eqvt) - nominal_datatype t = Var "name" | Fun "t" "t" @@ -76,42 +22,39 @@ thm t_tyS.perm thm t_tyS.inducts thm t_tyS.distinct +ML {* Sign.of_sort @{theory} (@{typ t}, @{sort fs}) *} lemma finite_fv_t_tyS: shows "finite (fv_t t)" "finite (fv_tyS ts)" by (induct rule: t_tyS.inducts) (simp_all) -lemma infinite_Un: - shows "infinite (S \ T) \ infinite S \ infinite T" - by simp - lemma supp_fv_t_tyS: shows "fv_t t = supp t" "fv_tyS ts = supp ts" -apply(induct rule: t_tyS.inducts) -apply(simp_all only: t_tyS.fv) -prefer 3 -apply(rule_tac t="supp (All fset t)" and s="supp (Abs (fset_to_set (fmap atom fset)) t)" in subst) -prefer 2 -apply(subst finite_supp_Abs) -apply(drule sym) -apply(simp add: finite_fv_t_tyS(1)) -apply(simp) -apply(simp_all (no_asm) only: supp_def) -apply(simp_all only: t_tyS.perm) -apply(simp_all only: permute_ABS) -apply(simp_all only: t_tyS.eq_iff Abs_eq_iff) -apply(simp_all only: alpha_gen) -apply(simp_all only: eqvts[symmetric]) -apply(simp_all only: eqvts eqvts_raw) -apply(simp_all only: supp_at_base[symmetric,simplified supp_def]) -apply(simp_all only: infinite_Un[symmetric] Collect_disj_eq[symmetric]) -apply(simp_all only: de_Morgan_conj[symmetric]) -done + apply(induct rule: t_tyS.inducts) + apply(simp_all only: t_tyS.fv) + prefer 3 + apply(rule_tac t="supp (All fset t)" and s="supp (Abs (fset_to_set (fmap atom fset)) t)" in subst) + prefer 2 + apply(subst finite_supp_Abs) + apply(drule sym) + apply(simp add: finite_fv_t_tyS(1)) + apply(simp) + apply(simp_all (no_asm) only: supp_def) + apply(simp_all only: t_tyS.perm) + apply(simp_all only: permute_ABS) + apply(simp_all only: t_tyS.eq_iff Abs_eq_iff) + apply(simp_all only: alpha_gen) + apply(simp_all only: eqvts[symmetric]) + apply(simp_all only: eqvts eqvts_raw) + apply(simp_all only: supp_at_base[symmetric,simplified supp_def]) + apply(simp_all only: infinite_Un[symmetric] Collect_disj_eq[symmetric]) + apply(simp_all only: de_Morgan_conj[symmetric]) + done instance t and tyS :: fs -apply default -apply (simp_all add: supp_fv_t_tyS[symmetric] finite_fv_t_tyS) -done + apply default + apply (simp_all add: supp_fv_t_tyS[symmetric] finite_fv_t_tyS) + done lemmas t_tyS_supp = t_tyS.fv[simplified supp_fv_t_tyS] @@ -120,7 +63,7 @@ \t1 t2 b. \\c. P c t1; \c. P c t2\ \ P b (Fun t1 t2); \fset t. \\c. P c t; fset_to_set (fmap atom fset) \* b\ \ P' b (All fset t) \ \ P a t" - + oops lemma