diff -r 141a36535f1d -r ba3f6e33d647 Nominal/ExTySch.thy --- a/Nominal/ExTySch.thy Sat Mar 27 09:41:00 2010 +0100 +++ b/Nominal/ExTySch.thy Sat Mar 27 09:56:35 2010 +0100 @@ -12,23 +12,7 @@ and tyS = All xs::"name fset" ty::"t" bind xs in ty -lemma t_tyS_supp_fv: "fv_t t = supp t \ fv_tyS tyS = supp tyS" -apply (induct rule: t_tyS.induct) -apply (simp_all only: t_tyS.fv) -apply (simp_all only: supp_abs(2)[symmetric]) -apply(simp_all (no_asm) only: supp_def) -apply(simp_all only: t_tyS.perm permute_abs) -apply(simp only: t_tyS.eq_iff supp_at_base[simplified supp_def]) -apply(simp only: t_tyS.eq_iff Collect_disj_eq[symmetric] infinite_Un[symmetric]) -apply simp -apply(simp only: Abs_eq_iff t_tyS.eq_iff) -apply (simp add: alphas) -apply (simp add: eqvts[symmetric]) -apply (simp add: eqvts eqvts_raw) -done - -lemmas t_tyS_supp = t_tyS.fv[simplified t_tyS_supp_fv] - +lemmas t_tyS_supp = t_tyS.fv[simplified t_tyS.supp] lemma size_eqvt_raw: "size (pi \ t :: t_raw) = size t"