diff -r a6f3e1b08494 -r b6873d123f9b Attic/Quot/quotient_tacs.ML --- a/Attic/Quot/quotient_tacs.ML Sat May 12 21:05:59 2012 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,665 +0,0 @@ -(* Title: HOL/Tools/Quotient/quotient_tacs.thy - Author: Cezary Kaliszyk and Christian Urban - -Tactics for solving goal arising from lifting theorems to quotient -types. -*) - -signature QUOTIENT_TACS = -sig - val regularize_tac: Proof.context -> int -> tactic - val injection_tac: Proof.context -> int -> tactic - val all_injection_tac: Proof.context -> int -> tactic - val clean_tac: Proof.context -> int -> tactic - val procedure_tac: Proof.context -> thm -> int -> tactic - val lift_tac: Proof.context -> thm list -> int -> tactic - val quotient_tac: Proof.context -> int -> tactic - val quot_true_tac: Proof.context -> (term -> term) -> int -> tactic - val lifted_attrib: attribute -end; - -structure Quotient_Tacs: QUOTIENT_TACS = -struct - -open Quotient_Info; -open Quotient_Term; - - -(** various helper fuctions **) - -(* Since HOL_basic_ss is too "big" for us, we *) -(* need to set up our own minimal simpset. *) -fun mk_minimal_ss ctxt = - Simplifier.context ctxt empty_ss - setsubgoaler asm_simp_tac - setmksimps (mksimps []) - -(* composition of two theorems, used in maps *) -fun OF1 thm1 thm2 = thm2 RS thm1 - -(* prints a warning, if the subgoal is not solved *) -fun WARN (tac, msg) i st = - case Seq.pull (SOLVED' tac i st) of - NONE => (warning msg; Seq.single st) - | seqcell => Seq.make (fn () => seqcell) - -fun RANGE_WARN tacs = RANGE (map WARN tacs) - -fun atomize_thm thm = -let - val thm' = Thm.freezeT (forall_intr_vars thm) (* FIXME/TODO: is this proper Isar-technology? *) - val thm'' = Object_Logic.atomize (cprop_of thm') -in - @{thm equal_elim_rule1} OF [thm'', thm'] -end - - - -(*** Regularize Tactic ***) - -(** solvers for equivp and quotient assumptions **) - -fun equiv_tac ctxt = - REPEAT_ALL_NEW (resolve_tac (equiv_rules_get ctxt)) - -fun equiv_solver_tac ss = equiv_tac (Simplifier.the_context ss) -val equiv_solver = Simplifier.mk_solver' "Equivalence goal solver" equiv_solver_tac - -fun quotient_tac ctxt = - (REPEAT_ALL_NEW (FIRST' - [rtac @{thm identity_quotient}, - resolve_tac (quotient_rules_get ctxt)])) - -fun quotient_solver_tac ss = quotient_tac (Simplifier.the_context ss) -val quotient_solver = - Simplifier.mk_solver' "Quotient goal solver" quotient_solver_tac - -fun solve_quotient_assm ctxt thm = - case Seq.pull (quotient_tac ctxt 1 thm) of - SOME (t, _) => t - | _ => error "Solve_quotient_assm failed. Possibly a quotient theorem is missing." - - -fun prep_trm thy (x, (T, t)) = - (cterm_of thy (Var (x, T)), cterm_of thy t) - -fun prep_ty thy (x, (S, ty)) = - (ctyp_of thy (TVar (x, S)), ctyp_of thy ty) - -fun get_match_inst thy pat trm = -let - val univ = Unify.matchers thy [(pat, trm)] - val SOME (env, _) = Seq.pull univ (* raises Bind, if no unifier *) (* FIXME fragile *) - val tenv = Vartab.dest (Envir.term_env env) - val tyenv = Vartab.dest (Envir.type_env env) -in - (map (prep_ty thy) tyenv, map (prep_trm thy) tenv) -end - -(* Calculates the instantiations for the lemmas: - - ball_reg_eqv_range and bex_reg_eqv_range - - Since the left-hand-side contains a non-pattern '?P (f ?x)' - we rely on unification/instantiation to check whether the - theorem applies and return NONE if it doesn't. -*) -fun calculate_inst ctxt ball_bex_thm redex R1 R2 = -let - val thy = ProofContext.theory_of ctxt - fun get_lhs thm = fst (Logic.dest_equals (Thm.concl_of thm)) - val ty_inst = map (SOME o ctyp_of thy) [domain_type (fastype_of R2)] - val trm_inst = map (SOME o cterm_of thy) [R2, R1] -in - case try (Drule.instantiate' ty_inst trm_inst) ball_bex_thm of - NONE => NONE - | SOME thm' => - (case try (get_match_inst thy (get_lhs thm')) redex of - NONE => NONE - | SOME inst2 => try (Drule.instantiate inst2) thm') -end - -fun ball_bex_range_simproc ss redex = -let - val ctxt = Simplifier.the_context ss -in - case redex of - (Const (@{const_name "Ball"}, _) $ (Const (@{const_name "Respects"}, _) $ - (Const (@{const_name "fun_rel"}, _) $ R1 $ R2)) $ _) => - calculate_inst ctxt @{thm ball_reg_eqv_range[THEN eq_reflection]} redex R1 R2 - - | (Const (@{const_name "Bex"}, _) $ (Const (@{const_name "Respects"}, _) $ - (Const (@{const_name "fun_rel"}, _) $ R1 $ R2)) $ _) => - calculate_inst ctxt @{thm bex_reg_eqv_range[THEN eq_reflection]} redex R1 R2 - - | _ => NONE -end - -(* Regularize works as follows: - - 0. preliminary simplification step according to - ball_reg_eqv bex_reg_eqv babs_reg_eqv ball_reg_eqv_range bex_reg_eqv_range - - 1. eliminating simple Ball/Bex instances (ball_reg_right bex_reg_left) - - 2. monos - - 3. commutation rules for ball and bex (ball_all_comm bex_ex_comm) - - 4. then rel-equalities, which need to be instantiated with 'eq_imp_rel' - to avoid loops - - 5. then simplification like 0 - - finally jump back to 1 -*) - -fun regularize_tac ctxt = -let - val thy = ProofContext.theory_of ctxt - val ball_pat = @{term "Ball (Respects (R1 ===> R2)) P"} - val bex_pat = @{term "Bex (Respects (R1 ===> R2)) P"} - val simproc = Simplifier.simproc_i thy "" [ball_pat, bex_pat] (K (ball_bex_range_simproc)) - val simpset = (mk_minimal_ss ctxt) - addsimps @{thms ball_reg_eqv bex_reg_eqv babs_reg_eqv babs_simp} - addsimprocs [simproc] - addSolver equiv_solver addSolver quotient_solver - val eq_imp_rel = @{lemma "equivp R ==> a = b --> R a b" by (simp add: equivp_reflp)} - val eq_eqvs = map (OF1 eq_imp_rel) (equiv_rules_get ctxt) -in - simp_tac simpset THEN' - REPEAT_ALL_NEW (CHANGED o FIRST' - [resolve_tac @{thms ball_reg_right bex_reg_left bex1_bexeq_reg}, - resolve_tac (Inductive.get_monos ctxt), - resolve_tac @{thms ball_all_comm bex_ex_comm}, - resolve_tac eq_eqvs, - simp_tac simpset]) -end - - - -(*** Injection Tactic ***) - -(* Looks for Quot_True assumptions, and in case its parameter - is an application, it returns the function and the argument. -*) -fun find_qt_asm asms = -let - fun find_fun trm = - case trm of - (Const(@{const_name Trueprop}, _) $ (Const (@{const_name Quot_True}, _) $ _)) => true - | _ => false -in - case find_first find_fun asms of - SOME (_ $ (_ $ (f $ a))) => SOME (f, a) - | _ => NONE -end - -fun quot_true_simple_conv ctxt fnctn ctrm = - case (term_of ctrm) of - (Const (@{const_name Quot_True}, _) $ x) => - let - val fx = fnctn x; - val thy = ProofContext.theory_of ctxt; - val cx = cterm_of thy x; - val cfx = cterm_of thy fx; - val cxt = ctyp_of thy (fastype_of x); - val cfxt = ctyp_of thy (fastype_of fx); - val thm = Drule.instantiate' [SOME cxt, SOME cfxt] [SOME cx, SOME cfx] @{thm QT_imp} - in - Conv.rewr_conv thm ctrm - end - -fun quot_true_conv ctxt fnctn ctrm = - case (term_of ctrm) of - (Const (@{const_name Quot_True}, _) $ _) => - quot_true_simple_conv ctxt fnctn ctrm - | _ $ _ => Conv.comb_conv (quot_true_conv ctxt fnctn) ctrm - | Abs _ => Conv.abs_conv (fn (_, ctxt) => quot_true_conv ctxt fnctn) ctxt ctrm - | _ => Conv.all_conv ctrm - -fun quot_true_tac ctxt fnctn = - CONVERSION - ((Conv.params_conv ~1 (fn ctxt => - (Conv.prems_conv ~1 (quot_true_conv ctxt fnctn)))) ctxt) - -fun dest_comb (f $ a) = (f, a) -fun dest_bcomb ((_ $ l) $ r) = (l, r) - -fun unlam t = - case t of - (Abs a) => snd (Term.dest_abs a) - | _ => unlam (Abs("", domain_type (fastype_of t), (incr_boundvars 1 t) $ (Bound 0))) - -fun dest_fun_type (Type("fun", [T, S])) = (T, S) - | dest_fun_type _ = error "dest_fun_type" - -val bare_concl = HOLogic.dest_Trueprop o Logic.strip_assums_concl - -(* We apply apply_rsp only in case if the type needs lifting. - This is the case if the type of the data in the Quot_True - assumption is different from the corresponding type in the goal. -*) -val apply_rsp_tac = - Subgoal.FOCUS (fn {concl, asms, context,...} => - let - val bare_concl = HOLogic.dest_Trueprop (term_of concl) - val qt_asm = find_qt_asm (map term_of asms) - in - case (bare_concl, qt_asm) of - (R2 $ (f $ x) $ (g $ y), SOME (qt_fun, qt_arg)) => - if fastype_of qt_fun = fastype_of f - then no_tac - else - let - val ty_x = fastype_of x - val ty_b = fastype_of qt_arg - val ty_f = range_type (fastype_of f) - val thy = ProofContext.theory_of context - val ty_inst = map (SOME o (ctyp_of thy)) [ty_x, ty_b, ty_f] - val t_inst = map (SOME o (cterm_of thy)) [R2, f, g, x, y]; - val inst_thm = Drule.instantiate' ty_inst - ([NONE, NONE, NONE] @ t_inst) @{thm apply_rsp} - in - (rtac inst_thm THEN' quotient_tac context) 1 - end - | _ => no_tac - end) - -(* Instantiates and applies 'equals_rsp'. Since the theorem is - complex we rely on instantiation to tell us if it applies -*) -fun equals_rsp_tac R ctxt = -let - val thy = ProofContext.theory_of ctxt -in - case try (cterm_of thy) R of (* There can be loose bounds in R *) - SOME ctm => - let - val ty = domain_type (fastype_of R) - in - case try (Drule.instantiate' [SOME (ctyp_of thy ty)] - [SOME (cterm_of thy R)]) @{thm equals_rsp} of - SOME thm => rtac thm THEN' quotient_tac ctxt - | NONE => K no_tac - end - | _ => K no_tac -end - -fun rep_abs_rsp_tac ctxt = - SUBGOAL (fn (goal, i) => - case (try bare_concl goal) of - SOME (rel $ _ $ (rep $ (abs $ _))) => - let - val thy = ProofContext.theory_of ctxt; - val (ty_a, ty_b) = dest_fun_type (fastype_of abs); - val ty_inst = map (SOME o (ctyp_of thy)) [ty_a, ty_b]; - in - case try (map (SOME o (cterm_of thy))) [rel, abs, rep] of - SOME t_inst => - (case try (Drule.instantiate' ty_inst t_inst) @{thm rep_abs_rsp} of - SOME inst_thm => (rtac inst_thm THEN' quotient_tac ctxt) i - | NONE => no_tac) - | NONE => no_tac - end - | _ => no_tac) - - - -(* Injection means to prove that the regularised theorem implies - the abs/rep injected one. - - The deterministic part: - - remove lambdas from both sides - - prove Ball/Bex/Babs equalities using ball_rsp, bex_rsp, babs_rsp - - prove Ball/Bex relations unfolding fun_rel_id - - reflexivity of equality - - prove equality of relations using equals_rsp - - use user-supplied RSP theorems - - solve 'relation of relations' goals using quot_rel_rsp - - remove rep_abs from the right side - (Lambdas under respects may have left us some assumptions) - - Then in order: - - split applications of lifted type (apply_rsp) - - split applications of non-lifted type (cong_tac) - - apply extentionality - - assumption - - reflexivity of the relation -*) -fun injection_match_tac ctxt = SUBGOAL (fn (goal, i) => -(case (bare_concl goal) of - (* (R1 ===> R2) (%x...) (%x...) ----> [|R1 x y|] ==> R2 (...x) (...y) *) - (Const (@{const_name fun_rel}, _) $ _ $ _) $ (Abs _) $ (Abs _) - => rtac @{thm fun_rel_id} THEN' quot_true_tac ctxt unlam - - (* (op =) (Ball...) (Ball...) ----> (op =) (...) (...) *) -| (Const (@{const_name "op ="},_) $ - (Const(@{const_name Ball},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $ - (Const(@{const_name Ball},_) $ (Const (@{const_name Respects}, _) $ _) $ _)) - => rtac @{thm ball_rsp} THEN' dtac @{thm QT_all} - - (* (R1 ===> op =) (Ball...) (Ball...) ----> [|R1 x y|] ==> (Ball...x) = (Ball...y) *) -| (Const (@{const_name fun_rel}, _) $ _ $ _) $ - (Const(@{const_name Ball},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $ - (Const(@{const_name Ball},_) $ (Const (@{const_name Respects}, _) $ _) $ _) - => rtac @{thm fun_rel_id} THEN' quot_true_tac ctxt unlam - - (* (op =) (Bex...) (Bex...) ----> (op =) (...) (...) *) -| Const (@{const_name "op ="},_) $ - (Const(@{const_name Bex},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $ - (Const(@{const_name Bex},_) $ (Const (@{const_name Respects}, _) $ _) $ _) - => rtac @{thm bex_rsp} THEN' dtac @{thm QT_ex} - - (* (R1 ===> op =) (Bex...) (Bex...) ----> [|R1 x y|] ==> (Bex...x) = (Bex...y) *) -| (Const (@{const_name fun_rel}, _) $ _ $ _) $ - (Const(@{const_name Bex},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $ - (Const(@{const_name Bex},_) $ (Const (@{const_name Respects}, _) $ _) $ _) - => rtac @{thm fun_rel_id} THEN' quot_true_tac ctxt unlam - -| (Const (@{const_name fun_rel}, _) $ _ $ _) $ - (Const(@{const_name Bex1_rel},_) $ _) $ (Const(@{const_name Bex1_rel},_) $ _) - => rtac @{thm bex1_rel_rsp} THEN' quotient_tac ctxt - -| (_ $ - (Const(@{const_name Babs},_) $ (Const (@{const_name Respects}, _) $ _) $ _) $ - (Const(@{const_name Babs},_) $ (Const (@{const_name Respects}, _) $ _) $ _)) - => rtac @{thm babs_rsp} THEN' RANGE [quotient_tac ctxt] - -| Const (@{const_name "op ="},_) $ (R $ _ $ _) $ (_ $ _ $ _) => - (rtac @{thm refl} ORELSE' - (equals_rsp_tac R ctxt THEN' RANGE [ - quot_true_tac ctxt (fst o dest_bcomb), quot_true_tac ctxt (snd o dest_bcomb)])) - - (* reflexivity of operators arising from Cong_tac *) -| Const (@{const_name "op ="},_) $ _ $ _ => rtac @{thm refl} - - (* respectfulness of constants; in particular of a simple relation *) -| _ $ (Const _) $ (Const _) (* fun_rel, list_rel, etc but not equality *) - => resolve_tac (rsp_rules_get ctxt) THEN_ALL_NEW quotient_tac ctxt - - (* R (...) (Rep (Abs ...)) ----> R (...) (...) *) - (* observe fun_map *) -| _ $ _ $ _ - => (rtac @{thm quot_rel_rsp} THEN_ALL_NEW quotient_tac ctxt) - ORELSE' rep_abs_rsp_tac ctxt - -| _ => K no_tac -) i) - -fun injection_step_tac ctxt rel_refl = - FIRST' [ - injection_match_tac ctxt, - - (* R (t $ ...) (t' $ ...) ----> apply_rsp provided type of t needs lifting *) - apply_rsp_tac ctxt THEN' - RANGE [quot_true_tac ctxt (fst o dest_comb), quot_true_tac ctxt (snd o dest_comb)], - - (* (op =) (t $ ...) (t' $ ...) ----> Cong provided type of t does not need lifting *) - (* merge with previous tactic *) - Cong_Tac.cong_tac @{thm cong} THEN' - RANGE [quot_true_tac ctxt (fst o dest_comb), quot_true_tac ctxt (snd o dest_comb)], - - (* (op =) (%x...) (%y...) ----> (op =) (...) (...) *) - rtac @{thm ext} THEN' quot_true_tac ctxt unlam, - - (* resolving with R x y assumptions *) - atac, - - (* reflexivity of the basic relations *) - (* R ... ... *) - resolve_tac rel_refl] - -fun injection_tac ctxt = -let - val rel_refl = map (OF1 @{thm equivp_reflp}) (equiv_rules_get ctxt) -in - injection_step_tac ctxt rel_refl -end - -fun all_injection_tac ctxt = - REPEAT_ALL_NEW (injection_tac ctxt) - - - -(*** Cleaning of the Theorem ***) - -(* expands all fun_maps, except in front of the (bound) variables listed in xs *) -fun fun_map_simple_conv xs ctrm = - case (term_of ctrm) of - ((Const (@{const_name "fun_map"}, _) $ _ $ _) $ h $ _) => - if member (op=) xs h - then Conv.all_conv ctrm - else Conv.rewr_conv @{thm fun_map_def[THEN eq_reflection]} ctrm - | _ => Conv.all_conv ctrm - -fun fun_map_conv xs ctxt ctrm = - case (term_of ctrm) of - _ $ _ => (Conv.comb_conv (fun_map_conv xs ctxt) then_conv - fun_map_simple_conv xs) ctrm - | Abs _ => Conv.abs_conv (fn (x, ctxt) => fun_map_conv ((term_of x)::xs) ctxt) ctxt ctrm - | _ => Conv.all_conv ctrm - -fun fun_map_tac ctxt = CONVERSION (fun_map_conv [] ctxt) - -(* custom matching functions *) -fun mk_abs u i t = - if incr_boundvars i u aconv t then Bound i else - case t of - t1 $ t2 => mk_abs u i t1 $ mk_abs u i t2 - | Abs (s, T, t') => Abs (s, T, mk_abs u (i + 1) t') - | Bound j => if i = j then error "make_inst" else t - | _ => t - -fun make_inst lhs t = -let - val _ $ (Abs (_, _, (_ $ ((f as Var (_, Type ("fun", [T, _]))) $ u)))) = lhs; - val _ $ (Abs (_, _, (_ $ g))) = t; -in - (f, Abs ("x", T, mk_abs u 0 g)) -end - -fun make_inst_id lhs t = -let - val _ $ (Abs (_, _, (f as Var (_, Type ("fun", [T, _]))) $ u)) = lhs; - val _ $ (Abs (_, _, g)) = t; -in - (f, Abs ("x", T, mk_abs u 0 g)) -end - -(* Simplifies a redex using the 'lambda_prs' theorem. - First instantiates the types and known subterms. - Then solves the quotient assumptions to get Rep2 and Abs1 - Finally instantiates the function f using make_inst - If Rep2 is an identity then the pattern is simpler and - make_inst_id is used -*) -fun lambda_prs_simple_conv ctxt ctrm = - case (term_of ctrm) of - (Const (@{const_name fun_map}, _) $ r1 $ a2) $ (Abs _) => - let - val thy = ProofContext.theory_of ctxt - val (ty_b, ty_a) = dest_fun_type (fastype_of r1) - val (ty_c, ty_d) = dest_fun_type (fastype_of a2) - val tyinst = map (SOME o (ctyp_of thy)) [ty_a, ty_b, ty_c, ty_d] - val tinst = [NONE, NONE, SOME (cterm_of thy r1), NONE, SOME (cterm_of thy a2)] - val thm1 = Drule.instantiate' tyinst tinst @{thm lambda_prs[THEN eq_reflection]} - val thm2 = solve_quotient_assm ctxt (solve_quotient_assm ctxt thm1) - val thm3 = MetaSimplifier.rewrite_rule @{thms id_apply[THEN eq_reflection]} thm2 - val (insp, inst) = - if ty_c = ty_d - then make_inst_id (term_of (Thm.lhs_of thm3)) (term_of ctrm) - else make_inst (term_of (Thm.lhs_of thm3)) (term_of ctrm) - val thm4 = Drule.instantiate ([], [(cterm_of thy insp, cterm_of thy inst)]) thm3 - in - Conv.rewr_conv thm4 ctrm - end - | _ => Conv.all_conv ctrm - -fun lambda_prs_conv ctxt = More_Conv.top_conv lambda_prs_simple_conv ctxt -fun lambda_prs_tac ctxt = CONVERSION (lambda_prs_conv ctxt) - - -(* Cleaning consists of: - - 1. unfolding of ---> in front of everything, except - bound variables (this prevents lambda_prs from - becoming stuck) - - 2. simplification with lambda_prs - - 3. simplification with: - - - Quotient_abs_rep Quotient_rel_rep - babs_prs all_prs ex_prs ex1_prs - - - id_simps and preservation lemmas and - - - symmetric versions of the definitions - (that is definitions of quotient constants - are folded) - - 4. test for refl -*) -fun clean_tac lthy = -let - val defs = map (symmetric o #def) (qconsts_dest lthy) - val prs = prs_rules_get lthy - val ids = id_simps_get lthy - val thms = @{thms Quotient_abs_rep Quotient_rel_rep babs_prs all_prs ex_prs ex1_prs} @ ids @ prs @ defs - - val ss = (mk_minimal_ss lthy) addsimps thms addSolver quotient_solver -in - EVERY' [fun_map_tac lthy, - lambda_prs_tac lthy, - simp_tac ss, - TRY o rtac refl] -end - - - -(** Tactic for Generalising Free Variables in a Goal **) - -fun inst_spec ctrm = - Drule.instantiate' [SOME (ctyp_of_term ctrm)] [NONE, SOME ctrm] @{thm spec} - -fun inst_spec_tac ctrms = - EVERY' (map (dtac o inst_spec) ctrms) - -fun all_list xs trm = - fold (fn (x, T) => fn t' => HOLogic.mk_all (x, T, t')) xs trm - -fun apply_under_Trueprop f = - HOLogic.dest_Trueprop #> f #> HOLogic.mk_Trueprop - -fun gen_frees_tac ctxt = - SUBGOAL (fn (concl, i) => - let - val thy = ProofContext.theory_of ctxt - val vrs = Term.add_frees concl [] - val cvrs = map (cterm_of thy o Free) vrs - val concl' = apply_under_Trueprop (all_list vrs) concl - val goal = Logic.mk_implies (concl', concl) - val rule = Goal.prove ctxt [] [] goal - (K (EVERY1 [inst_spec_tac (rev cvrs), atac])) - in - rtac rule i - end) - - -(** The General Shape of the Lifting Procedure **) - -(* - A is the original raw theorem - - B is the regularized theorem - - C is the rep/abs injected version of B - - D is the lifted theorem - - - 1st prem is the regularization step - - 2nd prem is the rep/abs injection step - - 3rd prem is the cleaning part - - the Quot_True premise in 2nd records the lifted theorem -*) -val lifting_procedure_thm = - @{lemma "[|A; - A --> B; - Quot_True D ==> B = C; - C = D|] ==> D" - by (simp add: Quot_True_def)} - -fun lift_match_error ctxt msg rtrm qtrm = -let - val rtrm_str = Syntax.string_of_term ctxt rtrm - val qtrm_str = Syntax.string_of_term ctxt qtrm - val msg = cat_lines [enclose "[" "]" msg, "The quotient theorem", qtrm_str, - "", "does not match with original theorem", rtrm_str] -in - error msg -end - -fun procedure_inst ctxt rtrm qtrm = -let - val thy = ProofContext.theory_of ctxt - val rtrm' = HOLogic.dest_Trueprop rtrm - val qtrm' = HOLogic.dest_Trueprop qtrm - val reg_goal = regularize_trm_chk ctxt (rtrm', qtrm') - handle (ERROR msg) => lift_match_error ctxt msg rtrm qtrm - val inj_goal = inj_repabs_trm_chk ctxt (reg_goal, qtrm') - handle (ERROR msg) => lift_match_error ctxt msg rtrm qtrm -in - Drule.instantiate' [] - [SOME (cterm_of thy rtrm'), - SOME (cterm_of thy reg_goal), - NONE, - SOME (cterm_of thy inj_goal)] lifting_procedure_thm -end - -(* the tactic leaves three subgoals to be proved *) -fun procedure_tac ctxt rthm = - Object_Logic.full_atomize_tac - THEN' gen_frees_tac ctxt - THEN' SUBGOAL (fn (goal, i) => - let - val rthm' = atomize_thm rthm - val rule = procedure_inst ctxt (prop_of rthm') goal - in - (rtac rule THEN' rtac rthm') i - end) - - -(* Automatic Proofs *) - -val msg1 = "The regularize proof failed." -val msg2 = cat_lines ["The injection proof failed.", - "This is probably due to missing respects lemmas.", - "Try invoking the injection method manually to see", - "which lemmas are missing."] -val msg3 = "The cleaning proof failed." - -fun lift_tac ctxt rthms = -let - fun mk_tac rthm = - procedure_tac ctxt rthm - THEN' RANGE_WARN - [(regularize_tac ctxt, msg1), - (all_injection_tac ctxt, msg2), - (clean_tac ctxt, msg3)] -in - simp_tac (mk_minimal_ss ctxt) (* unfolding multiple &&& *) - THEN' RANGE (map mk_tac rthms) -end - -(* An Attribute which automatically constructs the qthm *) -fun lifted_attrib_aux context thm = -let - val ctxt = Context.proof_of context - val ((_, [thm']), ctxt') = Variable.import false [thm] ctxt - val goal = (quotient_lift_all ctxt' o prop_of) thm' -in - Goal.prove ctxt' [] [] goal (K (lift_tac ctxt' [thm] 1)) - |> singleton (ProofContext.export ctxt' ctxt) -end; - -val lifted_attrib = Thm.rule_attribute lifted_attrib_aux - -end; (* structure *)