diff -r 2f1b00d83925 -r b679900fa5f6 Nominal/Manual/Term4.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Nominal/Manual/Term4.thy Tue Mar 23 08:19:33 2010 +0100 @@ -0,0 +1,121 @@ +theory Term4 +imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "Abs" "Perm" "Fv" "Rsp" "../Attic/Prove" "Quotient_List" +begin + +atom_decl name + +section {*** lam with indirect list recursion ***} + +datatype rtrm4 = + rVr4 "name" +| rAp4 "rtrm4" "rtrm4 list" +| rLm4 "name" "rtrm4" --"bind (name) in (trm)" +print_theorems + +thm rtrm4.recs + +(* there cannot be a clause for lists, as *) +(* permutations are already defined in Nominal (also functions, options, and so on) *) +setup {* snd o define_raw_perms (Datatype.the_info @{theory} "Term4.rtrm4") 1 *} + +(* "repairing" of the permute function *) +lemma repaired: + fixes ts::"rtrm4 list" + shows "permute_rtrm4_list p ts = p \ ts" + apply(induct ts) + apply(simp_all) + done + +thm permute_rtrm4_permute_rtrm4_list.simps +thm permute_rtrm4_permute_rtrm4_list.simps[simplified repaired] + +local_setup {* snd o define_fv_alpha (Datatype.the_info @{theory} "Term4.rtrm4") + [[[], [], [(NONE, 0,1)]], [[], []] ] *} +print_theorems + +lemma fix2: "alpha_rtrm4_list = list_rel alpha_rtrm4" +apply (rule ext)+ +apply (induct_tac x xa rule: list_induct2') +apply (simp_all add: alpha_rtrm4_alpha_rtrm4_list.intros) +apply clarify apply (erule alpha_rtrm4_list.cases) apply(simp_all) +apply clarify apply (erule alpha_rtrm4_list.cases) apply(simp_all) +apply rule +apply (erule alpha_rtrm4_list.cases) +apply simp_all +apply (rule alpha_rtrm4_alpha_rtrm4_list.intros) +apply simp_all +done + +(* We need sth like: +lemma fix3: "fv_rtrm4_list = set o map fv_rtrm4" *) + +notation + alpha_rtrm4 ("_ \4 _" [100, 100] 100) and + alpha_rtrm4_list ("_ \4l _" [100, 100] 100) +thm alpha_rtrm4_alpha_rtrm4_list.intros[simplified fix2] + +local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha4_inj}, []), (build_alpha_inj @{thms alpha_rtrm4_alpha_rtrm4_list.intros[simplified fix2]} @{thms rtrm4.distinct rtrm4.inject list.distinct list.inject} @{thms alpha_rtrm4.cases[simplified fix2] alpha_rtrm4_list.cases[simplified fix2]} ctxt)) ctxt)) *} +thm alpha4_inj + +local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha4_inj_no}, []), (build_alpha_inj @{thms alpha_rtrm4_alpha_rtrm4_list.intros} @{thms rtrm4.distinct rtrm4.inject list.distinct list.inject} @{thms alpha_rtrm4.cases alpha_rtrm4_list.cases} ctxt)) ctxt)) *} +thm alpha4_inj_no + +local_setup {* +snd o build_eqvts @{binding fv_rtrm4_fv_rtrm4_list_eqvt} [@{term fv_rtrm4}, @{term fv_rtrm4_list}] [@{term "permute :: perm \ rtrm4 \ rtrm4"},@{term "permute :: perm \ rtrm4 list \ rtrm4 list"}] (@{thms fv_rtrm4_fv_rtrm4_list.simps permute_rtrm4_permute_rtrm4_list.simps[simplified repaired]}) @{thm rtrm4.induct} +*} +print_theorems + +local_setup {* +(fn ctxt => snd (Local_Theory.note ((@{binding alpha4_eqvt_no}, []), + build_alpha_eqvts [@{term alpha_rtrm4}, @{term alpha_rtrm4_list}] [@{term "permute :: perm \ rtrm4 \ rtrm4"},@{term "permute :: perm \ rtrm4 list \ rtrm4 list"}] @{thms permute_rtrm4_permute_rtrm4_list.simps[simplified repaired] alpha4_inj_no} @{thm alpha_rtrm4_alpha_rtrm4_list.induct} ctxt) ctxt)) +*} +lemmas alpha4_eqvt = alpha4_eqvt_no[simplified fix2] + +local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha4_equivp_no}, []), + (build_equivps [@{term alpha_rtrm4}, @{term alpha_rtrm4_list}] @{thm rtrm4.induct} @{thm alpha_rtrm4_alpha_rtrm4_list.induct} @{thms rtrm4.inject list.inject} @{thms alpha4_inj_no} @{thms rtrm4.distinct list.distinct} @{thms alpha_rtrm4_list.cases alpha_rtrm4.cases} @{thms alpha4_eqvt_no} ctxt)) ctxt)) *} +lemmas alpha4_equivp = alpha4_equivp_no[simplified fix2] + +(*lemma fv_rtrm4_rsp: + "xa \4 ya \ fv_rtrm4 xa = fv_rtrm4 ya" + "x \4l y \ fv_rtrm4_list x = fv_rtrm4_list y" + apply (induct rule: alpha_rtrm4_alpha_rtrm4_list.inducts) + apply (simp_all add: alpha_gen) +done*) + + +quotient_type + trm4 = rtrm4 / alpha_rtrm4 +(*and + trm4list = "rtrm4 list" / alpha_rtrm4_list*) + by (simp_all add: alpha4_equivp) + +local_setup {* +(fn ctxt => ctxt + |> snd o (Quotient_Def.quotient_lift_const ("Vr4", @{term rVr4})) + |> snd o (Quotient_Def.quotient_lift_const ("Ap4", @{term rAp4})) + |> snd o (Quotient_Def.quotient_lift_const ("Lm4", @{term rLm4}))) +*} +print_theorems + +local_setup {* snd o prove_const_rsp @{binding fv_rtrm4_rsp} [@{term fv_rtrm4}] + (fn _ => fvbv_rsp_tac @{thm alpha_rtrm4_alpha_rtrm4_list.inducts(1)} @{thms fv_rtrm4_fv_rtrm4_list.simps} 1) *} +print_theorems + +local_setup {* snd o prove_const_rsp @{binding rVr4_rsp} [@{term rVr4}] + (fn _ => constr_rsp_tac @{thms alpha4_inj} @{thms fv_rtrm4_rsp} @{thms alpha4_equivp} 1) *} +lemma "(alpha_rtrm4 ===> list_rel alpha_rtrm4 ===> alpha_rtrm4) rAp4 rAp4" +apply simp +apply clarify +apply (simp add: alpha4_inj) + + +local_setup {* snd o prove_const_rsp @{binding rLm4_rsp} [@{term rLm4}] + (fn _ => constr_rsp_tac @{thms alpha4_inj} @{thms fv_rtrm4_rsp} @{thms alpha4_equivp} 1) *} +local_setup {* snd o prove_const_rsp @{binding permute_rtrm4_rsp} + [@{term "permute :: perm \ rtrm4 \ rtrm4"}, @{term "permute :: perm \ rtrm4 list \ rtrm4 list"}] + (fn _ => asm_simp_tac (HOL_ss addsimps @{thms alpha4_eqvt}) 1) *} + +thm rtrm4.induct +lemmas trm1_bp_induct = rtrm4.induct[quot_lifted] + +end