diff -r 040519ec99e9 -r b52e8651591f Nominal/Nominal2_Base.thy --- a/Nominal/Nominal2_Base.thy Mon Jan 13 15:42:10 2014 +0000 +++ b/Nominal/Nominal2_Base.thy Thu Mar 13 09:21:31 2014 +0000 @@ -618,7 +618,7 @@ lemma permute_fset_rsp[quot_respect]: shows "(op = ===> list_eq ===> list_eq) permute permute" - unfolding fun_rel_def + unfolding rel_fun_def by (simp add: set_eqvt[symmetric]) instantiation fset :: (pt) pt @@ -1191,8 +1191,8 @@ subsubsection {* Equivariance for @{typ "'a option"} *} -lemma option_map_eqvt[eqvt]: - shows "p \ (Option.map f x) = Option.map (p \ f) (p \ x)" +lemma map_option_eqvt[eqvt]: + shows "p \ (map_option f x) = map_option (p \ f) (p \ x)" by (cases x) (simp_all) @@ -1565,21 +1565,21 @@ proof - { assume "a \ supp p" "a \ supp q" then have "(p + q) \ a = (q + p) \ a" - by (simp add: supp_perm) + by (simp add: supp_perm) } moreover { assume a: "a \ supp p" "a \ supp q" then have "p \ a \ supp p" by (simp add: supp_perm) then have "p \ a \ supp q" using asm by auto with a have "(p + q) \ a = (q + p) \ a" - by (simp add: supp_perm) + by (simp add: supp_perm) } moreover { assume a: "a \ supp p" "a \ supp q" then have "q \ a \ supp q" by (simp add: supp_perm) then have "q \ a \ supp p" using asm by auto with a have "(p + q) \ a = (q + p) \ a" - by (simp add: supp_perm) + by (simp add: supp_perm) } ultimately show "(p + q) \ a = (q + p) \ a" using asm by blast @@ -2793,19 +2793,19 @@ by (auto simp: swap_atom) moreover { have "{q \ a, p \ a} \ insert a bs \ p \ insert a bs" - using ** - apply (auto simp: supp_perm insert_eqvt) - apply (subgoal_tac "q \ a \ bs \ p \ bs") - apply(auto)[1] - apply(subgoal_tac "q \ a \ {a. q \ a \ a}") - apply(blast) - apply(simp) - done + using ** + apply (auto simp: supp_perm insert_eqvt) + apply (subgoal_tac "q \ a \ bs \ p \ bs") + apply(auto)[1] + apply(subgoal_tac "q \ a \ {a. q \ a \ a}") + apply(blast) + apply(simp) + done then have "supp (q \ a \ p \ a) \ insert a bs \ p \ insert a bs" unfolding supp_swap by auto moreover have "supp q \ insert a bs \ p \ insert a bs" - using ** by (auto simp: insert_eqvt) + using ** by (auto simp: insert_eqvt) ultimately have "supp q' \ insert a bs \ p \ insert a bs" unfolding q'_def using supp_plus_perm by blast @@ -2862,19 +2862,19 @@ unfolding q'_def using 2 * `a \ set bs` by (auto simp: swap_atom) moreover { have "{q \ a, p \ a} \ set (a # bs) \ p \ (set (a # bs))" - using ** - apply (auto simp: supp_perm insert_eqvt) - apply (subgoal_tac "q \ a \ set bs \ p \ set bs") - apply(auto)[1] - apply(subgoal_tac "q \ a \ {a. q \ a \ a}") - apply(blast) - apply(simp) - done + using ** + apply (auto simp: supp_perm insert_eqvt) + apply (subgoal_tac "q \ a \ set bs \ p \ set bs") + apply(auto)[1] + apply(subgoal_tac "q \ a \ {a. q \ a \ a}") + apply(blast) + apply(simp) + done then have "supp (q \ a \ p \ a) \ set (a # bs) \ p \ set (a # bs)" unfolding supp_swap by auto moreover have "supp q \ set (a # bs) \ p \ (set (a # bs))" - using ** by (auto simp: insert_eqvt) + using ** by (auto simp: insert_eqvt) ultimately have "supp q' \ set (a # bs) \ p \ (set (a # bs))" unfolding q'_def using supp_plus_perm by blast