diff -r 040519ec99e9 -r b52e8651591f Nominal/Nominal2_Abs.thy --- a/Nominal/Nominal2_Abs.thy Mon Jan 13 15:42:10 2014 +0000 +++ b/Nominal/Nominal2_Abs.thy Thu Mar 13 09:21:31 2014 +0000 @@ -479,14 +479,14 @@ shows "(op= ===> op= ===> alpha_abs_set) Pair Pair" and "(op= ===> op= ===> alpha_abs_res) Pair Pair" and "(op= ===> op= ===> alpha_abs_lst) Pair Pair" - unfolding fun_rel_def + unfolding rel_fun_def by (auto intro: alphas_abs_refl) lemma [quot_respect]: shows "(op= ===> alpha_abs_set ===> alpha_abs_set) permute permute" and "(op= ===> alpha_abs_res ===> alpha_abs_res) permute permute" and "(op= ===> alpha_abs_lst ===> alpha_abs_lst) permute permute" - unfolding fun_rel_def + unfolding rel_fun_def by (auto intro: alphas_abs_eqvt simp only: Pair_eqvt) lemma Abs_eq_iff: @@ -1045,18 +1045,18 @@ definition prod_alpha :: "('a \ 'a \ bool) \ ('b \ 'b \ bool) \ ('a \ 'b \ 'a \ 'b \ bool)" where - "prod_alpha = prod_rel" + "prod_alpha = rel_prod" lemma [quot_respect]: - shows "((R1 ===> op =) ===> (R2 ===> op =) ===> prod_rel R1 R2 ===> op =) prod_fv prod_fv" - unfolding fun_rel_def - unfolding prod_rel_def + shows "((R1 ===> op =) ===> (R2 ===> op =) ===> rel_prod R1 R2 ===> op =) prod_fv prod_fv" + unfolding rel_fun_def + unfolding rel_prod_def by auto lemma [quot_preserve]: assumes q1: "Quotient3 R1 abs1 rep1" and q2: "Quotient3 R2 abs2 rep2" - shows "((abs1 ---> id) ---> (abs2 ---> id) ---> map_pair rep1 rep2 ---> id) prod_fv = prod_fv" + shows "((abs1 ---> id) ---> (abs2 ---> id) ---> map_prod rep1 rep2 ---> id) prod_fv = prod_fv" by (simp add: fun_eq_iff Quotient3_abs_rep[OF q1] Quotient3_abs_rep[OF q2]) lemma [mono]: @@ -1067,7 +1067,7 @@ lemma [eqvt]: shows "p \ prod_alpha A B x y = prod_alpha (p \ A) (p \ B) (p \ x) (p \ y)" unfolding prod_alpha_def - unfolding prod_rel_def + unfolding rel_prod_def by (perm_simp) (rule refl) lemma [eqvt]: