diff -r 9a8decba77c5 -r b435ee87d9c8 Nominal/Ex/Lambda.thy --- a/Nominal/Ex/Lambda.thy Wed Apr 14 16:10:44 2010 +0200 +++ b/Nominal/Ex/Lambda.thy Wed Apr 14 16:11:04 2010 +0200 @@ -127,211 +127,60 @@ | t_App[intro]: "\\ \ t1 : T1 \ T2 \ \ \ t2 : T1\ \ \ \ App t1 t2 : T2" | t_Lam[intro]: "\atom x \ \; (x, T1) # \ \ t : T2\ \ \ \ Lam x t : T1 \ T2" - -ML {* -fun map_term f t = - (case f t of - NONE => map_term' f t - | x => x) -and map_term' f (t $ u) = - (case (map_term f t, map_term f u) of - (NONE, NONE) => NONE - | (SOME t'', NONE) => SOME (t'' $ u) - | (NONE, SOME u'') => SOME (t $ u'') - | (SOME t'', SOME u'') => SOME (t'' $ u'')) - | map_term' f (Abs (s, T, t)) = - (case map_term f t of - NONE => NONE - | SOME t'' => SOME (Abs (s, T, t''))) - | map_term' _ _ = NONE; - -fun map_thm_tac ctxt tac thm = -let - val monos = Inductive.get_monos ctxt -in - EVERY [cut_facts_tac [thm] 1, etac rev_mp 1, - REPEAT_DETERM (FIRSTGOAL (resolve_tac monos)), - REPEAT_DETERM (rtac impI 1 THEN (atac 1 ORELSE tac))] -end - -(* - proves F[f t] from F[t] where F[t] is the given theorem - - - F needs to be monotone - - f returns either SOME for a term it fires - and NONE elsewhere -*) -fun map_thm ctxt f tac thm = -let - val opt_goal_trm = map_term f (prop_of thm) - fun prove goal = - Goal.prove ctxt [] [] goal (fn _ => map_thm_tac ctxt tac thm) -in - case opt_goal_trm of - NONE => thm - | SOME goal => prove goal -end +inductive + typing' :: "(name\ty) list\lam\ty\bool" ("_ \ _ : _" [60,60,60] 60) +where + t'_Var[intro]: "\valid \; (x,T)\set \\ \ \ \ Var x : T" + | t'_App[intro]: "\\ \ t1 : T1\T2 \ \ \ t2 : T1\ \ \ \ App t1 t2 : T2" + | t'_Lam[intro]: "\atom x\\;(x,T1)#\ \ t : T2\ \ \ \ Lam x t : T1\T2" -fun transform_prem ctxt names thm = -let - fun split_conj names (Const ("op &", _) $ p $ q) = - (case head_of p of - Const (name, _) => if name mem names then SOME q else NONE - | _ => NONE) - | split_conj _ _ = NONE; -in - map_thm ctxt (split_conj names) (etac conjunct2 1) thm -end -*} - -ML {* -open Nominal_Permeq -*} - -ML {* -fun single_case_tac ctxt pred_names pi intro = -let - val rule = Drule.instantiate' [] [SOME pi] @{thm permute_boolE} -in - eqvt_strict_tac ctxt [] [] THEN' - SUBPROOF (fn {prems, context as ctxt, ...} => - let - val prems' = map (transform_prem ctxt pred_names) prems - val side_cond_tac = EVERY' - [ rtac rule, - eqvt_strict_tac ctxt @{thms permute_minus_cancel(2)} [], - resolve_tac prems' ] - in - HEADGOAL (rtac intro THEN_ALL_NEW (resolve_tac prems' ORELSE' side_cond_tac)) - end) ctxt -end -*} - -ML {* -fun eqvt_rel_tac pred_name = -let - val thy = ProofContext.theory_of ctxt - val ({names, ...}, {raw_induct, intrs, ...}) = - Inductive.the_inductive ctxt (Sign.intern_const thy pred_name) - val param_no = length (Inductive.params_of raw_induct) - val (([raw_concl], [pi]), ctxt') = - ctxt |> Variable.import_terms false [concl_of raw_induct] - ||>> Variable.variant_fixes ["pi"]; - val preds = map (fst o HOLogic.dest_imp) - (HOLogic.dest_conj (HOLogic.dest_Trueprop raw_concl)); -in +inductive + typing2' :: "(name\ty) list\lam\ty\bool" ("_ 2\ _ : _" [60,60,60] 60) +where + t2'_Var[intro]: "\valid \; (x,T)\set \\ \ \ 2\ Var x : T" + | t2'_App[intro]: "\\ 2\ t1 : T1\T2 \ \ 2\ t2 : T1\ \ \ 2\ App t1 t2 : T2" + | t2'_Lam[intro]: "\atom x\\;(x,T1)#\ 2\ t : T2\ \ \ 2\ Lam x t : T1\T2" -end -*} - - - -lemma [eqvt]: - assumes a: "valid Gamma" - shows "valid (p \ Gamma)" -using a -apply(induct) -apply(tactic {* my_tac @{context} ["Lambda.valid"] @{cterm "- p"} @{thm valid.intros(1)} 1 *}) -apply(tactic {* my_tac @{context }["Lambda.valid"] @{cterm "- p"} @{thm valid.intros(2)} 1 *}) -done - -lemma - shows "Gamma \ t : T \ (p \ Gamma) \ (p \ t) : (p \ T)" -ML_prf {* -val ({names, ...}, {raw_induct, ...}) = - Inductive.the_inductive @{context} (Sign.intern_const @{theory} "typing") -*} -apply(tactic {* rtac raw_induct 1 *}) -apply(tactic {* my_tac @{context} ["Lambda.typing"] @{cterm "- p"} @{thm typing.intros(1)} 1 *}) -apply(tactic {* my_tac @{context} ["Lambda.typing"] @{cterm "- p"} @{thm typing.intros(2)} 1 *}) -apply(tactic {* my_tac @{context} ["Lambda.typing"] @{cterm "- p"} @{thm typing.intros(3)} 1 *}) -done - -lemma uu[eqvt]: - assumes a: "Gamma \ t : T" - shows "(p \ Gamma) \ (p \ t) : (p \ T)" -using a -apply(induct) -apply(tactic {* my_tac @{context} @{thms typing.intros} 1 *}) -apply(perm_strict_simp) -apply(rule typing.intros) -apply(rule conj_mono[THEN mp]) -prefer 3 -apply(assumption) -apply(rule impI) -prefer 2 -apply(rule impI) -apply(simp) -apply(auto)[1] -apply(simp) -apply(tactic {* my_tac @{context} @{thms typing.intros} 1 *}) -done +inductive + typing'' :: "(name\ty) list\lam\ty\bool" ("_ |\ _ : _" [60,60,60] 60) +and valid' :: "(name\ty) list \ bool" +where + v1[intro]: "valid' []" + | v2[intro]: "\valid' \;atom x\\\\ valid' ((x,T)#\)" + | t'_Var[intro]: "\valid' \; (x,T)\set \\ \ \ |\ Var x : T" + | t'_App[intro]: "\\ |\ t1 : T1\T2; \ |\ t2 : T1\ \ \ |\ App t1 t2 : T2" + | t'_Lam[intro]: "\atom x\\;(x,T1)#\ |\ t : T2\ \ \ |\ Lam x t : T1\T2" -(* -inductive - typing :: "(name\ty) list \ lam \ ty \ bool" ("_ \ _ : _" [60,60,60] 60) -where - t_Var[intro]: "\valid \; (x, T) \ set \\ \ \ \ Var x : T" - | t_App[intro]: "\\ \ t1 : T1 \ T2 \ \ \ t2 : T1\ \ \ \ App t1 t2 : T2" - | t_Lam[intro]: "\atom x \ \; (x, T1) # \ \ t : T2\ \ \ \ Lam x t : T1 \ T2" - -lemma uu[eqvt]: - assumes a: "Gamma \ t : T" - shows "(p \ Gamma) \ (p \ t) : (p \ T)" -using a -apply(induct) -apply(tactic {* my_tac @{context} @{thms typing.intros} 1 *}) -apply(tactic {* my_tac @{context} @{thms typing.intros} 1 *}) -apply(tactic {* my_tac @{context} @{thms typing.intros} 1 *}) -done -*) - -ML {* -val inductive_atomize = @{thms induct_atomize}; +use "../../Nominal-General/nominal_eqvt.ML" -val atomize_conv = - MetaSimplifier.rewrite_cterm (true, false, false) (K (K NONE)) - (HOL_basic_ss addsimps inductive_atomize); -val atomize_intr = Conv.fconv_rule (Conv.prems_conv ~1 atomize_conv); -fun atomize_induct ctxt = Conv.fconv_rule (Conv.prems_conv ~1 - (Conv.params_conv ~1 (K (Conv.prems_conv ~1 atomize_conv)) ctxt)); -*} - -ML {* -val ({names, ...}, {raw_induct, intrs, elims, ...}) = - Inductive.the_inductive @{context} (Sign.intern_const @{theory} "typing") -*} +equivariance valid +equivariance typing -ML {* val ind_params = Inductive.params_of raw_induct *} -ML {* val raw_induct = atomize_induct @{context} raw_induct; *} -ML {* val elims = map (atomize_induct @{context}) elims; *} -ML {* val monos = Inductive.get_monos @{context}; *} - -lemma - shows "Gamma \ t : T \ (p \ Gamma) \ (p \ t) : (p \ T)" -apply(tactic {* rtac raw_induct 1 *}) -apply(tactic {* my_tac @{context} intrs 1 *}) -apply(perm_strict_simp) -apply(rule typing.intros) -oops - - +thm valid.eqvt +thm typing.eqvt thm eqvts thm eqvts_raw -declare permute_lam_raw.simps[eqvt] -thm alpha_gen_real_eqvt -(*declare alpha_gen_real_eqvt[eqvt]*) +equivariance typing' +equivariance typing2' +equivariance typing'' + +ML {* +fun mk_minus p = + Const (@{const_name "uminus"}, @{typ "perm => perm"}) $ p +*} -lemma - assumes a: "alpha_lam_raw t1 t2" - shows "alpha_lam_raw (p \ t1) (p \ t2)" -using a -apply(induct) -apply(tactic {* my_tac @{context} @{thms alpha_lam_raw.intros} 1 *}) -oops +inductive + tt :: "('a \ 'a \ bool) \ ('a \ 'a \ bool)" + for r :: "('a \ 'a \ bool)" +where + aa: "tt r a a" + | bb: "tt r a b ==> tt r a c" -thm alpha_lam_raw.intros[no_vars] +(* PROBLEM: derived eqvt-theorem does not conform with [eqvt] +equivariance tt +*) + inductive alpha_lam_raw' @@ -342,18 +191,15 @@ | "\pi. ({atom name}, lam_raw) \gen alpha_lam_raw fv_lam_raw pi ({atom namea}, lam_rawa) \ alpha_lam_raw' (Lam_raw name lam_raw) (Lam_raw namea lam_rawa)" +declare permute_lam_raw.simps[eqvt] +(*declare alpha_gen_real_eqvt[eqvt]*) +(*equivariance alpha_lam_raw'*) + lemma assumes a: "alpha_lam_raw' t1 t2" shows "alpha_lam_raw' (p \ t1) (p \ t2)" using a apply(induct) -apply(tactic {* my_tac @{context} @{thms alpha_lam_raw'.intros} 1 *}) -apply(tactic {* my_tac @{context} @{thms alpha_lam_raw'.intros} 1 *}) -apply(perm_strict_simp) -apply(rule alpha_lam_raw'.intros) -apply(simp add: alphas) -apply(rule_tac p="- p" in permute_boolE) -apply(perm_simp permute_minus_cancel(2)) oops