diff -r 8a1c8dc72b5c -r ae254a6d685c quotient.ML --- a/quotient.ML Mon Dec 07 14:09:50 2009 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,253 +0,0 @@ -signature QUOTIENT = -sig - exception LIFT_MATCH of string - - val quotient_type: ((binding * mixfix) * (typ * term)) list -> Proof.context -> Proof.state - val quotient_type_cmd: (((bstring * mixfix) * string) * string) list -> Proof.context -> Proof.state - -end; - -structure Quotient: QUOTIENT = -struct - -exception LIFT_MATCH of string - -(* wrappers for define, note and theorem_i *) -fun define (name, mx, rhs) lthy = -let - val ((rhs, (_ , thm)), lthy') = - Local_Theory.define ((name, mx), (Attrib.empty_binding, rhs)) lthy -in - ((rhs, thm), lthy') -end - -fun note (name, thm, attrs) lthy = -let - val ((_,[thm']), lthy') = Local_Theory.note ((name, attrs), [thm]) lthy -in - (thm', lthy') -end - -fun internal_attr at = Attrib.internal (K at) - -fun theorem after_qed goals ctxt = -let - val goals' = map (rpair []) goals - fun after_qed' thms = after_qed (the_single thms) -in - Proof.theorem_i NONE after_qed' [goals'] ctxt -end - - -(* definition of quotient types *) -(********************************) - -(* constructs the term lambda (c::rty => bool). EX (x::rty). c = rel x *) -fun typedef_term rel rty lthy = -let - val [x, c] = [("x", rty), ("c", HOLogic.mk_setT rty)] - |> Variable.variant_frees lthy [rel] - |> map Free -in - lambda c - (HOLogic.exists_const rty $ - lambda x (HOLogic.mk_eq (c, (rel $ x)))) -end - -(* makes the new type definitions and proves non-emptyness*) -fun typedef_make (qty_name, mx, rel, rty) lthy = -let - val typedef_tac = - EVERY1 [rewrite_goal_tac @{thms mem_def}, - rtac @{thm exI}, - rtac @{thm exI}, - rtac @{thm refl}] - val tfrees = map fst (Term.add_tfreesT rty []) -in - Local_Theory.theory_result - (Typedef.add_typedef false NONE - (qty_name, tfrees, mx) - (typedef_term rel rty lthy) - NONE typedef_tac) lthy -end - -(* tactic to prove the QUOT_TYPE theorem for the new type *) -fun typedef_quot_type_tac equiv_thm (typedef_info: Typedef.info) = -let - val unfold_mem = MetaSimplifier.rewrite_rule [@{thm mem_def}] - val rep_thm = #Rep typedef_info |> unfold_mem - val rep_inv = #Rep_inverse typedef_info - val abs_inv = #Abs_inverse typedef_info |> unfold_mem - val rep_inj = #Rep_inject typedef_info -in - EVERY1 [rtac @{thm QUOT_TYPE.intro}, - rtac equiv_thm, - rtac rep_thm, - rtac rep_inv, - rtac abs_inv, - rtac @{thm exI}, - rtac @{thm refl}, - rtac rep_inj] -end - -(* proves the QUOT_TYPE theorem *) -fun typedef_quot_type_thm (rel, abs, rep, equiv_thm, typedef_info) lthy = -let - val quot_type_const = Const (@{const_name "QUOT_TYPE"}, dummyT) - val goal = HOLogic.mk_Trueprop (quot_type_const $ rel $ abs $ rep) - |> Syntax.check_term lthy -in - Goal.prove lthy [] [] goal - (K (typedef_quot_type_tac equiv_thm typedef_info)) -end - -(* proves the quotient theorem *) -fun typedef_quotient_thm (rel, abs, rep, abs_def, rep_def, quot_type_thm) lthy = -let - val quotient_const = Const (@{const_name "Quotient"}, dummyT) - val goal = HOLogic.mk_Trueprop (quotient_const $ rel $ abs $ rep) - |> Syntax.check_term lthy - - val typedef_quotient_thm_tac = - EVERY1 [K (rewrite_goals_tac [abs_def, rep_def]), - rtac @{thm QUOT_TYPE.Quotient}, - rtac quot_type_thm] -in - Goal.prove lthy [] [] goal - (K typedef_quotient_thm_tac) -end - -(* main function for constructing the quotient type *) -fun mk_typedef_main (((qty_name, mx), (rty, rel)), equiv_thm) lthy = -let - (* generates typedef *) - val ((_, typedef_info), lthy1) = typedef_make (qty_name, mx, rel, rty) lthy - - (* abs and rep functions *) - val abs_ty = #abs_type typedef_info - val rep_ty = #rep_type typedef_info - val abs_name = #Abs_name typedef_info - val rep_name = #Rep_name typedef_info - val abs = Const (abs_name, rep_ty --> abs_ty) - val rep = Const (rep_name, abs_ty --> rep_ty) - - (* ABS and REP definitions *) - val ABS_const = Const (@{const_name "QUOT_TYPE.ABS"}, dummyT ) - val REP_const = Const (@{const_name "QUOT_TYPE.REP"}, dummyT ) - val ABS_trm = Syntax.check_term lthy1 (ABS_const $ rel $ abs) - val REP_trm = Syntax.check_term lthy1 (REP_const $ rep) - val ABS_name = Binding.prefix_name "ABS_" qty_name - val REP_name = Binding.prefix_name "REP_" qty_name - val (((ABS, ABS_def), (REP, REP_def)), lthy2) = - lthy1 |> define (ABS_name, NoSyn, ABS_trm) - ||>> define (REP_name, NoSyn, REP_trm) - - (* quot_type theorem *) - val quot_thm = typedef_quot_type_thm (rel, abs, rep, equiv_thm, typedef_info) lthy2 - val quot_thm_name = Binding.prefix_name "QUOT_TYPE_" qty_name - - (* quotient theorem *) - val quotient_thm = typedef_quotient_thm (rel, ABS, REP, ABS_def, REP_def, quot_thm) lthy2 - val quotient_thm_name = Binding.prefix_name "Quotient_" qty_name - - (* storing the quot-info *) - val qty_str = fst (Term.dest_Type abs_ty) - val lthy3 = quotdata_update qty_str - (Logic.varifyT abs_ty, Logic.varifyT rty, rel, equiv_thm) lthy2 - (* FIXME: varifyT should not be used *) - (* FIXME: the relation needs to be a string, since its type needs *) - (* FIXME: to recalculated in for example REGULARIZE *) - - (* storing of the equiv_thm under a name *) - val (_, lthy4) = note (Binding.suffix_name "_equivp" qty_name, equiv_thm, - [internal_attr equiv_rules_add]) lthy3 - - (* interpretation *) - val bindd = ((Binding.make ("", Position.none)), ([]: Attrib.src list)) - val ((_, [eqn1pre]), lthy5) = Variable.import true [ABS_def] lthy4; - val eqn1i = Thm.prop_of (symmetric eqn1pre) - val ((_, [eqn2pre]), lthy6) = Variable.import true [REP_def] lthy5; - val eqn2i = Thm.prop_of (symmetric eqn2pre) - - val exp_morphism = ProofContext.export_morphism lthy6 (ProofContext.init (ProofContext.theory_of lthy6)); - val exp_term = Morphism.term exp_morphism; - val exp = Morphism.thm exp_morphism; - - val mthd = Method.SIMPLE_METHOD ((rtac quot_thm 1) THEN - ALLGOALS (simp_tac (HOL_basic_ss addsimps [(symmetric (exp ABS_def)), (symmetric (exp REP_def))]))) - val mthdt = Method.Basic (fn _ => mthd) - val bymt = Proof.global_terminal_proof (mthdt, NONE) - val exp_i = [(@{const_name QUOT_TYPE}, ((("QUOT_TYPE_I_" ^ (Binding.name_of qty_name)), true), - Expression.Named [("R", rel), ("Abs", abs), ("Rep", rep) ]))] -in - lthy6 - |> note (quot_thm_name, quot_thm, []) - ||>> note (quotient_thm_name, quotient_thm, [internal_attr quotient_rules_add]) - ||> Local_Theory.theory (fn thy => - let - val global_eqns = map exp_term [eqn2i, eqn1i]; - (* Not sure if the following context should not be used *) - val (global_eqns2, lthy7) = Variable.import_terms true global_eqns lthy6; - val global_eqns3 = map (fn t => (bindd, t)) global_eqns2; - in ProofContext.theory_of (bymt (Expression.interpretation (exp_i, []) global_eqns3 thy)) end) -end - - - - -(* interface and syntax setup *) - -(* the ML-interface takes a list of 4-tuples consisting of *) -(* *) -(* - the name of the quotient type *) -(* - its mixfix annotation *) -(* - the type to be quotient *) -(* - the relation according to which the type is quotient *) - -fun quotient_type quot_list lthy = -let - fun mk_goal (rty, rel) = - let - val equivp_ty = ([rty, rty] ---> @{typ bool}) --> @{typ bool} - in - HOLogic.mk_Trueprop (Const (@{const_name equivp}, equivp_ty) $ rel) - end - - val goals = map (mk_goal o snd) quot_list - - fun after_qed thms lthy = - fold_map mk_typedef_main (quot_list ~~ thms) lthy |> snd -in - theorem after_qed goals lthy -end - -fun quotient_type_cmd spec lthy = -let - fun parse_spec (((qty_str, mx), rty_str), rel_str) = - let - val qty_name = Binding.name qty_str - val rty = Syntax.read_typ lthy rty_str - val rel = Syntax.read_term lthy rel_str - in - ((qty_name, mx), (rty, rel)) - end -in - quotient_type (map parse_spec spec) lthy -end - -val quotspec_parser = - OuterParse.and_list1 - (OuterParse.short_ident -- OuterParse.opt_infix -- - (OuterParse.$$$ "=" |-- OuterParse.typ) -- - (OuterParse.$$$ "/" |-- OuterParse.term)) - -val _ = OuterKeyword.keyword "/" - -val _ = - OuterSyntax.local_theory_to_proof "quotient" - "quotient type definitions (requires equivalence proofs)" - OuterKeyword.thy_goal (quotspec_parser >> quotient_type_cmd) - -end; (* structure *) - -open Quotient