diff -r 2a878d7d631f -r ab8ed83d0188 Quot/Nominal/Terms.thy --- a/Quot/Nominal/Terms.thy Wed Feb 24 17:42:52 2010 +0100 +++ b/Quot/Nominal/Terms.thy Wed Feb 24 18:38:49 2010 +0100 @@ -65,14 +65,14 @@ lemma bv1_eqvt[eqvt]: shows "(pi \ bv1 x) = bv1 (pi \ x)" apply (induct x) - apply (simp_all add: atom_eqvt eqvts) + apply (simp_all add: eqvts atom_eqvt) done lemma fv_rtrm1_eqvt[eqvt]: "(pi\fv_rtrm1 t) = fv_rtrm1 (pi\t)" "(pi\fv_bp b) = fv_bp (pi\b)" apply (induct t and b) - apply (simp_all add: insert_eqvt atom_eqvt empty_eqvt union_eqvt Diff_eqvt bv1_eqvt) + apply (simp_all add: eqvts atom_eqvt) done lemma alpha1_eqvt: @@ -80,40 +80,12 @@ "alpha_bp a b \ alpha_bp (pi \ a) (pi \ b)" apply (induct t s and a b rule: alpha_rtrm1_alpha_bp.inducts) apply (simp_all add:eqvts alpha1_inj) - apply (erule exE) - apply (rule_tac x="pi \ pia" in exI) - apply (simp add: alpha_gen) - apply(erule conjE)+ - apply(rule conjI) - apply(rule_tac ?p1="- pi" in permute_eq_iff[THEN iffD1]) - apply(simp add: atom_eqvt Diff_eqvt insert_eqvt empty_eqvt fv_rtrm1_eqvt) - apply(rule conjI) - apply(rule_tac ?p1="- pi" in fresh_star_permute_iff[THEN iffD1]) - apply(simp add: atom_eqvt Diff_eqvt fv_rtrm1_eqvt insert_eqvt empty_eqvt) - apply(simp add: permute_eqvt[symmetric]) - apply (erule exE) - apply (erule exE) - apply (rule conjI) - apply (rule_tac x="pi \ pia" in exI) - apply (simp add: alpha_gen) - apply(erule conjE)+ - apply(rule conjI) - apply(rule_tac ?p1="- pi" in permute_eq_iff[THEN iffD1]) - apply(simp add: fv_rtrm1_eqvt Diff_eqvt bv1_eqvt) - apply(rule conjI) - apply(rule_tac ?p1="- pi" in fresh_star_permute_iff[THEN iffD1]) - apply(simp add: atom_eqvt fv_rtrm1_eqvt Diff_eqvt bv1_eqvt) - apply(simp add: permute_eqvt[symmetric]) - apply (rule_tac x="pi \ piaa" in exI) - apply (simp add: alpha_gen) - apply(erule conjE)+ - apply(rule conjI) - apply(rule_tac ?p1="- pi" in permute_eq_iff[THEN iffD1]) - apply(simp add: fv_rtrm1_eqvt Diff_eqvt bv1_eqvt) - apply(rule conjI) - apply(rule_tac ?p1="- pi" in fresh_star_permute_iff[THEN iffD1]) - apply(simp add: atom_eqvt fv_rtrm1_eqvt Diff_eqvt bv1_eqvt) - apply(simp add: permute_eqvt[symmetric]) + apply (tactic {* + ALLGOALS ( + TRY o REPEAT_ALL_NEW (CHANGED o rtac conjI) THEN_ALL_NEW + (etac @{thm alpha_gen_compose_eqvt}) + ) *}) + apply (simp_all only: eqvts atom_eqvt) done local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha1_equivp}, []), @@ -453,45 +425,30 @@ local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha5_inj}, []), (build_alpha_inj @{thms alpha_rtrm5_alpha_rlts.intros} @{thms rtrm5.distinct rtrm5.inject rlts.distinct rlts.inject} @{thms alpha_rtrm5.cases alpha_rlts.cases} ctxt)) ctxt)) *} thm alpha5_inj -lemma rbv5_eqvt: +lemma rbv5_eqvt[eqvt]: "pi \ (rbv5 x) = rbv5 (pi \ x)" -sorry + apply (induct x) + apply (simp_all add: eqvts atom_eqvt) + done -lemma fv_rtrm5_eqvt: +lemma fv_rtrm5_rlts_eqvt[eqvt]: "pi \ (fv_rtrm5 x) = fv_rtrm5 (pi \ x)" -sorry - -lemma fv_rlts_eqvt: - "pi \ (fv_rlts x) = fv_rlts (pi \ x)" -sorry + "pi \ (fv_rlts l) = fv_rlts (pi \ l)" + apply (induct x and l) + apply (simp_all add: eqvts atom_eqvt) + done lemma alpha5_eqvt: "xa \5 y \ (x \ xa) \5 (x \ y)" "xb \l ya \ (x \ xb) \l (x \ ya)" - apply(induct rule: alpha_rtrm5_alpha_rlts.inducts) + apply (induct rule: alpha_rtrm5_alpha_rlts.inducts) apply (simp_all add: alpha5_inj) - apply (erule exE)+ - apply(unfold alpha_gen) - apply (erule conjE)+ - apply (rule conjI) - apply (rule_tac x="x \ pi" in exI) - apply (rule conjI) - apply(rule_tac ?p1="- x" in permute_eq_iff[THEN iffD1]) - apply(simp add: atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt rbv5_eqvt fv_rlts_eqvt) - apply(rule conjI) - apply(rule_tac ?p1="- x" in fresh_star_permute_iff[THEN iffD1]) - apply(simp add: atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt rbv5_eqvt fv_rlts_eqvt) - apply (subst permute_eqvt[symmetric]) - apply (simp) - apply (rule_tac x="x \ pia" in exI) - apply (rule conjI) - apply(rule_tac ?p1="- x" in permute_eq_iff[THEN iffD1]) - apply(simp add: atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt rbv5_eqvt fv_rtrm5_eqvt) - apply(rule conjI) - apply(rule_tac ?p1="- x" in fresh_star_permute_iff[THEN iffD1]) - apply(simp add: atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt rbv5_eqvt fv_rtrm5_eqvt) - apply (subst permute_eqvt[symmetric]) - apply (simp) + apply (tactic {* + ALLGOALS ( + TRY o REPEAT_ALL_NEW (CHANGED o rtac conjI) THEN_ALL_NEW + (etac @{thm alpha_gen_compose_eqvt}) + ) *}) + apply (simp_all only: eqvts atom_eqvt) done local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha5_equivp}, []),