diff -r 1e08743b6997 -r a9e55e1ef64c Quot/QuotMain.thy --- a/Quot/QuotMain.thy Fri Dec 11 16:32:40 2009 +0100 +++ b/Quot/QuotMain.thy Fri Dec 11 17:19:38 2009 +0100 @@ -17,14 +17,14 @@ begin definition - ABS::"'a \ 'b" + abs::"'a \ 'b" where - "ABS x \ Abs (R x)" + "abs x \ Abs (R x)" definition - REP::"'b \ 'a" + rep::"'b \ 'a" where - "REP a = Eps (Rep a)" + "rep a = Eps (Rep a)" lemma lem9: shows "R (Eps (R x)) = R x" @@ -36,9 +36,9 @@ qed theorem thm10: - shows "ABS (REP a) \ a" + shows "abs (rep a) \ a" apply (rule eq_reflection) - unfolding ABS_def REP_def + unfolding abs_def rep_def proof - from rep_prop obtain x where eq: "Rep a = R x" by auto @@ -50,9 +50,9 @@ show "Abs (R (Eps (Rep a))) = a" by simp qed -lemma REP_refl: - shows "R (REP a) (REP a)" -unfolding REP_def +lemma rep_refl: + shows "R (rep a) (rep a)" +unfolding rep_def by (simp add: equivp[simplified equivp_def]) lemma lem7: @@ -64,21 +64,21 @@ done theorem thm11: - shows "R r r' = (ABS r = ABS r')" -unfolding ABS_def + shows "R r r' = (abs r = abs r')" +unfolding abs_def by (simp only: equivp[simplified equivp_def] lem7) -lemma REP_ABS_rsp: - shows "R f (REP (ABS g)) = R f g" - and "R (REP (ABS g)) f = R g f" +lemma rep_abs_rsp: + shows "R f (rep (abs g)) = R f g" + and "R (rep (abs g)) f = R g f" by (simp_all add: thm10 thm11) lemma Quotient: - "Quotient R ABS REP" + "Quotient R abs rep" apply(unfold Quotient_def) apply(simp add: thm10) -apply(simp add: REP_refl) +apply(simp add: rep_refl) apply(subst thm11[symmetric]) apply(simp add: equivp[simplified equivp_def]) done