diff -r 883b38196dba -r a9cb6a51efc3 Paper/document/root.tex --- a/Paper/document/root.tex Thu Mar 18 11:36:03 2010 +0100 +++ b/Paper/document/root.tex Thu Mar 18 11:37:10 2010 +0100 @@ -3,11 +3,10 @@ \usepackage{isabellesym} \usepackage{amsmath} \usepackage{amssymb} +\usepackage{tikz} +\usepackage{pgf} +\usepackage{pdfsetup} -%\ConferenceShortName{ICFP} -%\ConferenceName{International Conference on Functional Programming} - -\usepackage{pdfsetup} \urlstyle{rm} \isabellestyle{it} @@ -19,10 +18,9 @@ \renewcommand{\isasymemptyset}{$\varnothing$} -% for uniform font size -%\renewcommand{\isastyle}{\isastyleminor} %----------------- theorem definitions ---------- +\newtheorem{Property}{Theorem}[section] \newtheorem{Theorem}{Theorem}[section] \newtheorem{Definition}[Theorem]{Definition} \newtheorem{Example}{\it Example}[section] @@ -41,18 +39,18 @@ \maketitle \begin{abstract} Nominal Isabelle is a definitional extension of the Isabelle/HOL -theorem prover. It provides a reasoning infrastructure for formalisations -of programming language calculi. In this paper we present an extension -of Nominal Isabelle with general binding constructs. Such constructs -are important in formalisation ... +theorem prover. It provides a proving infrastructure for +conveninet reasoning about programming language calculi. In this paper +we present an extension of Nominal Isabelle for dealing with general binding +structures. Such structures are ubiquitous in programming language research +and only very poorly handled by the well-known single abstraction in the +lambda-calculus. We give definitions for alpha-equivalence and establish +the reasoning structure for alpha-equated terms. For example we provide +a strong induction principle that has the variable convention already +built in. \end{abstract} -%\begin{keywords} -%Language formalisations, Isabelle/HOL, POPLmark -%\end{keywords} - -% generated text of all theories \input{session} \bibliographystyle{plain}