diff -r 9b673588244a -r a9b6a00b1ba0 Nominal/FSet.thy --- a/Nominal/FSet.thy Sat Sep 18 05:13:42 2010 +0800 +++ b/Nominal/FSet.thy Sat Sep 18 06:09:43 2010 +0800 @@ -634,16 +634,16 @@ lemma insert_preserve2: shows "((rep_fset ---> (map rep_fset \ rep_fset) ---> (abs_fset \ map abs_fset)) op #) = (id ---> rep_fset ---> abs_fset) op #" - by (simp add: expand_fun_eq abs_o_rep[OF Quotient_fset] map_id Quotient_abs_rep[OF Quotient_fset]) + by (simp add: fun_eq_iff abs_o_rep[OF Quotient_fset] map_id Quotient_abs_rep[OF Quotient_fset]) lemma [quot_preserve]: "(rep_fset ---> (map rep_fset \ rep_fset) ---> (abs_fset \ map abs_fset)) op # = finsert" - by (simp add: expand_fun_eq Quotient_abs_rep[OF Quotient_fset] + by (simp add: fun_eq_iff Quotient_abs_rep[OF Quotient_fset] abs_o_rep[OF Quotient_fset] map_id finsert_def) lemma [quot_preserve]: "((map rep_fset \ rep_fset) ---> (map rep_fset \ rep_fset) ---> (abs_fset \ map abs_fset)) op @ = funion" - by (simp add: expand_fun_eq Quotient_abs_rep[OF Quotient_fset] + by (simp add: fun_eq_iff Quotient_abs_rep[OF Quotient_fset] abs_o_rep[OF Quotient_fset] map_id sup_fset_def) lemma list_all2_app_l: @@ -858,7 +858,7 @@ lemma inj_map_eq_iff: "inj f \ (map f l \ map f m) = (l \ m)" - by (simp add: expand_set_eq[symmetric] inj_image_eq_iff) + by (simp add: set_eq_iff[symmetric] inj_image_eq_iff) text {* alternate formulation with a different decomposition principle and a proof of equivalence *} @@ -1271,7 +1271,7 @@ lemma fminus_red_fnotin[simp]: "x |\| ys \ finsert x xs - ys = finsert x (xs - ys)" by (simp add: fminus_red) -lemma expand_fset_eq: +lemma fset_eq_iff: "(S = T) = (\x. (x |\| S) = (x |\| T))" by (lifting list_eq.simps[simplified memb_def[symmetric]])