diff -r e1e2ca92760b -r a8fc346deda3 Nominal/nominal_inductive.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Nominal/nominal_inductive.ML Wed Jan 05 17:33:43 2011 +0000 @@ -0,0 +1,437 @@ +(* Title: nominal_inductive.ML + Author: Christian Urban + + Infrastructure for proving strong induction theorems + for inductive predicates involving nominal datatypes. + + Code based on an earlier version by Stefan Berghofer. +*) + + +signature NOMINAL_INDUCTIVE = +sig + val prove_strong_inductive: string list -> string list -> term list list -> thm -> thm list -> + Proof.context -> Proof.state + + val prove_strong_inductive_cmd: xstring * (string * string list) list -> Proof.context -> Proof.state +end + +structure Nominal_Inductive : NOMINAL_INDUCTIVE = +struct + + +fun mk_cplus p q = Thm.capply (Thm.capply @{cterm "plus :: perm => perm => perm"} p) q + +fun mk_cminus p = Thm.capply @{cterm "uminus :: perm => perm"} p + + +fun minus_permute_intro_tac p = + rtac (Drule.instantiate' [] [SOME (mk_cminus p)] @{thm permute_boolE}) + +fun minus_permute_elim p thm = + thm RS (Drule.instantiate' [] [NONE, SOME (mk_cminus p)] @{thm permute_boolI}) + +fun real_head_of (@{term Trueprop} $ t) = real_head_of t + | real_head_of (Const ("==>", _) $ _ $ t) = real_head_of t + | real_head_of (Const (@{const_name all}, _) $ Abs (_, _, t)) = real_head_of t + | real_head_of (Const (@{const_name All}, _) $ Abs (_, _, t)) = real_head_of t + | real_head_of (Const ("HOL.induct_forall", _) $ Abs (_, _, t)) = real_head_of t + | real_head_of t = head_of t + + +fun mk_vc_compat (avoid, avoid_trm) prems concl_args params = + let + val vc_goal = concl_args + |> HOLogic.mk_tuple + |> mk_fresh_star avoid_trm + |> HOLogic.mk_Trueprop + |> (curry Logic.list_implies) prems + |> (curry list_all_free) params + val finite_goal = avoid_trm + |> mk_finite + |> HOLogic.mk_Trueprop + |> (curry Logic.list_implies) prems + |> (curry list_all_free) params + in + if null avoid then [] else [vc_goal, finite_goal] + end + +fun map_term prop f trm = + if prop trm + then f trm + else case trm of + (t1 $ t2) => map_term prop f t1 $ map_term prop f t2 + | Abs (x, T, t) => Abs (x, T, map_term prop f t) + | _ => trm + +fun add_p_c p (c, c_ty) trm = + let + val (P, args) = strip_comb trm + val (P_name, P_ty) = dest_Free P + val (ty_args, bool) = strip_type P_ty + val args' = map (mk_perm p) args + in + list_comb (Free (P_name, (c_ty :: ty_args) ---> bool), c :: args') + |> (fn t => HOLogic.all_const c_ty $ lambda c t ) + |> (fn t => HOLogic.all_const @{typ perm} $ lambda p t) + end + +fun induct_forall_const T = Const ("HOL.induct_forall", (T --> @{typ bool}) --> @{typ bool}) +fun mk_induct_forall (a, T) t = induct_forall_const T $ Abs (a, T, t) + +fun add_c_prop qnt Ps (c, c_name, c_ty) trm = + let + fun add t = + let + val (P, args) = strip_comb t + val (P_name, P_ty) = dest_Free P + val (ty_args, bool) = strip_type P_ty + val args' = args + |> qnt ? map (incr_boundvars 1) + in + list_comb (Free (P_name, (c_ty :: ty_args) ---> bool), c :: args') + |> qnt ? mk_induct_forall (c_name, c_ty) + end + in + map_term (member (op =) Ps o head_of) add trm + end + +fun prep_prem Ps c_name c_ty (avoid, avoid_trm) (params, prems, concl) = + let + val prems' = prems + |> map (incr_boundvars 1) + |> map (add_c_prop true Ps (Bound 0, c_name, c_ty)) + + val avoid_trm' = avoid_trm + |> (curry list_abs_free) (params @ [(c_name, c_ty)]) + |> strip_abs_body + |> (fn t => mk_fresh_star_ty c_ty t (Bound 0)) + |> HOLogic.mk_Trueprop + + val prems'' = + if null avoid + then prems' + else avoid_trm' :: prems' + + val concl' = concl + |> incr_boundvars 1 + |> add_c_prop false Ps (Bound 0, c_name, c_ty) + in + mk_full_horn (params @ [(c_name, c_ty)]) prems'' concl' + end + +fun same_name (Free (a1, _), Free (a2, _)) = (a1 = a2) + | same_name (Var (a1, _), Var (a2, _)) = (a1 = a2) + | same_name (Const (a1, _), Const (a2, _)) = (a1 = a2) + | same_name _ = false + +fun map7 _ [] [] [] [] [] [] [] = [] + | map7 f (x :: xs) (y :: ys) (z :: zs) (u :: us) (v :: vs) (r :: rs) (s :: ss) = + f x y z u v r s :: map7 f xs ys zs us vs rs ss + +(* local abbreviations *) +fun eqvt_stac ctxt = Nominal_Permeq.eqvt_strict_tac ctxt @{thms permute_minus_cancel} [] +fun eqvt_srule ctxt = Nominal_Permeq.eqvt_strict_rule ctxt @{thms permute_minus_cancel} [] + +val all_elims = + let + fun spec' ct = Drule.instantiate' [SOME (ctyp_of_term ct)] [NONE, SOME ct] @{thm spec} + in + fold (fn ct => fn th => th RS spec' ct) + end + +fun helper_tac flag prm p ctxt = + Subgoal.SUBPROOF (fn {context, prems, ...} => + let + val prems' = prems + |> map (minus_permute_elim p) + |> map (eqvt_srule context) + + val prm' = (prems' MRS prm) + |> flag ? (all_elims [p]) + |> flag ? (eqvt_srule context) + + val _ = tracing ("prm':" ^ @{make_string} prm') + in + print_tac "start helper" + THEN asm_full_simp_tac (HOL_ss addsimps (prm' :: @{thms induct_forall_def})) 1 + THEN print_tac "final helper" + end) ctxt + +fun non_binder_tac prem intr_cvars Ps ctxt = + Subgoal.SUBPROOF (fn {context, params, prems, ...} => + let + val thy = ProofContext.theory_of context + val (prms, p, _) = split_last2 (map snd params) + val prm_tys = map (fastype_of o term_of) prms + val cperms = map (cterm_of thy o perm_const) prm_tys + val p_prms = map2 (fn ct1 => fn ct2 => Thm.mk_binop ct1 p ct2) cperms prms + val prem' = cterm_instantiate (intr_cvars ~~ p_prms) prem + + (* for inductive-premises*) + fun tac1 prm = helper_tac true prm p context + + (* for non-inductive premises *) + fun tac2 prm = + EVERY' [ minus_permute_intro_tac p, + eqvt_stac context, + helper_tac false prm p context ] + + fun select prm (t, i) = + (if member same_name Ps (real_head_of t) then tac1 prm else tac2 prm) i + in + EVERY1 [eqvt_stac ctxt, rtac prem', RANGE (map (SUBGOAL o select) prems) ] + end) ctxt + +fun fresh_thm ctxt user_thm p c concl_args avoid_trm = + let + val conj1 = + mk_fresh_star (mk_perm (Bound 0) (mk_perm p avoid_trm)) c + val conj2 = + mk_fresh_star_ty @{typ perm} (mk_supp (HOLogic.mk_tuple (map (mk_perm p) concl_args))) (Bound 0) + val fresh_goal = mk_exists ("q", @{typ perm}) (HOLogic.mk_conj (conj1, conj2)) + |> HOLogic.mk_Trueprop + + val ss = @{thms finite_supp supp_Pair finite_Un permute_finite} @ + @{thms fresh_star_Pair fresh_star_permute_iff} + val simp = asm_full_simp_tac (HOL_ss addsimps ss) + in + Goal.prove ctxt [] [] fresh_goal + (K (HEADGOAL (rtac @{thm at_set_avoiding2} + THEN_ALL_NEW EVERY' [cut_facts_tac user_thm, REPEAT o etac @{thm conjE}, simp]))) + end + +val supp_perm_eq' = @{lemma "fresh_star (supp (permute p x)) q ==> permute p x == permute (q + p) x" + by (simp add: supp_perm_eq)} +val fresh_star_plus = @{lemma "fresh_star (permute q (permute p x)) c ==> fresh_star (permute (q + p) x) c" + by (simp add: permute_plus)} + + +fun binder_tac prem intr_cvars param_trms Ps user_thm avoid avoid_trm concl_args ctxt = + Subgoal.FOCUS (fn {context = ctxt, params, prems, concl, ...} => + let + val thy = ProofContext.theory_of ctxt + val (prms, p, c) = split_last2 (map snd params) + val prm_trms = map term_of prms + val prm_tys = map fastype_of prm_trms + + val avoid_trm' = subst_free (param_trms ~~ prm_trms) avoid_trm + val concl_args' = map (subst_free (param_trms ~~ prm_trms)) concl_args + + val user_thm' = map (cterm_instantiate (intr_cvars ~~ prms)) user_thm + |> map (full_simplify (HOL_ss addsimps (@{thm fresh_star_Pair}::prems))) + + val fthm = fresh_thm ctxt user_thm' (term_of p) (term_of c) concl_args' avoid_trm' + + val (([(_, q)], fprop :: fresh_eqs), ctxt') = Obtain.result + (K (EVERY1 [etac @{thm exE}, + full_simp_tac (HOL_basic_ss addsimps @{thms supp_Pair fresh_star_Un}), + REPEAT o etac @{thm conjE}, + dtac fresh_star_plus, + REPEAT o dtac supp_perm_eq'])) [fthm] ctxt + + val expand_conv = Conv.try_conv (Conv.rewrs_conv fresh_eqs) + fun expand_conv_bot ctxt = Conv.bottom_conv (K expand_conv) ctxt + + val cperms = map (cterm_of thy o perm_const) prm_tys + val qp_prms = map2 (fn ct1 => fn ct2 => Thm.mk_binop ct1 (mk_cplus q p) ct2) cperms prms + val prem' = cterm_instantiate (intr_cvars ~~ qp_prms) prem + + val fprop' = eqvt_srule ctxt' fprop + val tac_fresh = simp_tac (HOL_basic_ss addsimps [fprop']) + + (* for inductive-premises*) + fun tac1 prm = helper_tac true prm (mk_cplus q p) ctxt' + + (* for non-inductive premises *) + fun tac2 prm = + EVERY' [ minus_permute_intro_tac (mk_cplus q p), + eqvt_stac ctxt, + helper_tac false prm (mk_cplus q p) ctxt' ] + + fun select prm (t, i) = + (if member same_name Ps (real_head_of t) then tac1 prm else tac2 prm) i + + val _ = tracing ("fthm:\n" ^ @{make_string} fthm) + val _ = tracing ("fr_eqs:\n" ^ cat_lines (map @{make_string} fresh_eqs)) + val _ = tracing ("fprop:\n" ^ @{make_string} fprop) + val _ = tracing ("fprop':\n" ^ @{make_string} fprop') + val _ = tracing ("fperm:\n" ^ @{make_string} q) + val _ = tracing ("prem':\n" ^ @{make_string} prem') + + val side_thm = Goal.prove ctxt' [] [] (term_of concl) + (fn {context, ...} => + EVERY1 [ CONVERSION (expand_conv_bot context), + eqvt_stac context, + rtac prem', + RANGE (tac_fresh :: map (SUBGOAL o select) prems), + K (print_tac "GOAL") ]) + |> singleton (ProofContext.export ctxt' ctxt) + in + rtac side_thm 1 + end) ctxt + +fun case_tac ctxt Ps avoid avoid_trm intr_cvars param_trms prem user_thm concl_args = + let + val tac1 = non_binder_tac prem intr_cvars Ps ctxt + val tac2 = binder_tac prem intr_cvars param_trms Ps user_thm avoid avoid_trm concl_args ctxt + in + EVERY' [ rtac @{thm allI}, rtac @{thm allI}, if null avoid then tac1 else tac2 ] + end + +fun prove_sinduct_tac raw_induct user_thms Ps avoids avoid_trms intr_cvars param_trms concl_args + {prems, context} = + let + val cases_tac = + map7 (case_tac context Ps) avoids avoid_trms intr_cvars param_trms prems user_thms concl_args + in + EVERY1 [ DETERM o rtac raw_induct, RANGE cases_tac ] + end + +val normalise = @{lemma "(Q --> (!p c. P p c)) ==> (!!c. Q ==> P (0::perm) c)" by simp} + +fun prove_strong_inductive pred_names rule_names avoids raw_induct intrs ctxt = + let + val thy = ProofContext.theory_of ctxt + val ((_, [raw_induct']), ctxt') = Variable.import true [raw_induct] ctxt + + val (ind_prems, ind_concl) = raw_induct' + |> prop_of + |> Logic.strip_horn + |>> map strip_full_horn + val params = map (fn (x, _, _) => x) ind_prems + val param_trms = (map o map) Free params + + val intr_vars_tys = map (fn t => rev (Term.add_vars (prop_of t) [])) intrs + val intr_vars = (map o map) fst intr_vars_tys + val intr_vars_substs = map2 (curry (op ~~)) intr_vars param_trms + val intr_cvars = (map o map) (cterm_of thy o Var) intr_vars_tys + + val (intr_prems, intr_concls) = intrs + |> map prop_of + |> map2 subst_Vars intr_vars_substs + |> map Logic.strip_horn + |> split_list + + val intr_concls_args = map (snd o strip_comb o HOLogic.dest_Trueprop) intr_concls + + val avoid_trms = avoids + |> (map o map) (setify ctxt') + |> map fold_union + + val vc_compat_goals = + map4 mk_vc_compat (avoids ~~ avoid_trms) intr_prems intr_concls_args params + + val ([c_name, a, p], ctxt'') = Variable.variant_fixes ["c", "'a", "p"] ctxt' + val c_ty = TFree (a, @{sort fs}) + val c = Free (c_name, c_ty) + val p = Free (p, @{typ perm}) + + val (preconds, ind_concls) = ind_concl + |> HOLogic.dest_Trueprop + |> HOLogic.dest_conj + |> map HOLogic.dest_imp + |> split_list + + val Ps = map (fst o strip_comb) ind_concls + + val ind_concl' = ind_concls + |> map (add_p_c p (c, c_ty)) + |> (curry (op ~~)) preconds + |> map HOLogic.mk_imp + |> fold_conj + |> HOLogic.mk_Trueprop + + val ind_prems' = ind_prems + |> map2 (prep_prem Ps c_name c_ty) (avoids ~~ avoid_trms) + + fun after_qed ctxt_outside user_thms ctxt = + let + val strong_ind_thms = Goal.prove ctxt [] ind_prems' ind_concl' + (prove_sinduct_tac raw_induct user_thms Ps avoids avoid_trms intr_cvars param_trms intr_concls_args) + |> singleton (ProofContext.export ctxt ctxt_outside) + |> Datatype_Aux.split_conj_thm + |> map (fn thm => thm RS normalise) + |> map (asm_full_simplify (HOL_basic_ss addsimps @{thms permute_zero induct_rulify})) + |> map (Drule.rotate_prems (length ind_prems')) + |> map zero_var_indexes + + val qualified_thm_name = pred_names + |> map Long_Name.base_name + |> space_implode "_" + |> (fn s => Binding.qualify false s (Binding.name "strong_induct")) + + val attrs = + [ Attrib.internal (K (Rule_Cases.consumes 1)), + Attrib.internal (K (Rule_Cases.case_names rule_names)) ] + val _ = tracing ("RESULTS\n" ^ cat_lines (map (Syntax.string_of_term ctxt o prop_of) strong_ind_thms)) + val _ = tracing ("rule_names: " ^ commas rule_names) + val _ = tracing ("pred_names: " ^ commas pred_names) + in + ctxt + |> Local_Theory.note ((qualified_thm_name, attrs), strong_ind_thms) + |> snd + end + in + Proof.theorem NONE (after_qed ctxt) ((map o map) (rpair []) vc_compat_goals) ctxt'' + end + +fun prove_strong_inductive_cmd (pred_name, avoids) ctxt = + let + val thy = ProofContext.theory_of ctxt; + val ({names, ...}, {raw_induct, intrs, ...}) = + Inductive.the_inductive ctxt (Sign.intern_const thy pred_name); + + val rule_names = + hd names + |> the o Induct.lookup_inductP ctxt + |> fst o Rule_Cases.get + |> map fst + + val _ = (case duplicates (op = o pairself fst) avoids of + [] => () + | xs => error ("Duplicate case names: " ^ commas_quote (map fst xs))) + + val _ = (case subtract (op =) rule_names (map fst avoids) of + [] => () + | xs => error ("No such case(s) in inductive definition: " ^ commas_quote xs)) + + val avoids_ordered = order_default (op =) [] rule_names avoids + + fun read_avoids avoid_trms intr = + let + (* fixme hack *) + val (((_, ctrms), _), ctxt') = Variable.import true [intr] ctxt + val trms = map (term_of o snd) ctrms + val ctxt'' = fold Variable.declare_term trms ctxt' + in + map (Syntax.read_term ctxt'') avoid_trms + end + + val avoid_trms = map2 read_avoids avoids_ordered intrs + in + prove_strong_inductive names rule_names avoid_trms raw_induct intrs ctxt + end + +(* outer syntax *) +local + structure P = Parse; + structure S = Scan + + val _ = Keyword.keyword "avoids" + + val single_avoid_parser = + P.name -- (P.$$$ ":" |-- P.and_list1 P.term) + + val avoids_parser = + S.optional (P.$$$ "avoids" |-- P.enum1 "|" single_avoid_parser) [] + + val main_parser = P.xname -- avoids_parser +in + val _ = + Outer_Syntax.local_theory_to_proof "nominal_inductive" + "prove strong induction theorem for inductive predicate involving nominal datatypes" + Keyword.thy_goal (main_parser >> prove_strong_inductive_cmd) +end + +end \ No newline at end of file