diff -r 660a4f5adee8 -r a6b0220fb8ae Quotient-Paper-jv/document/root.tex --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Quotient-Paper-jv/document/root.tex Tue Dec 20 17:54:53 2011 +0900 @@ -0,0 +1,76 @@ +\documentclass{svjour3} +\usepackage{times} +\usepackage{isabelle} +\usepackage{isabellesym} +\usepackage{amsmath} +\usepackage{amssymb} +\usepackage{pdfsetup} +\usepackage{tikz} +%\usepackage{pgf} +\usepackage{stmaryrd} +\usepackage{verbdef} +%\usepackage{longtable} +\usepackage{mathpartir} +%\newtheorem{definition}{Definition} +%\newtheorem{proposition}{Proposition} +%\newtheorem{lemma}{Lemma} + +\urlstyle{rm} +\isabellestyle{rm} +\renewcommand{\isastyleminor}{\rm}% +\renewcommand{\isastyle}{\normalsize\rm}% +\renewcommand{\isastylescript}{\it} +\def\dn{\,\triangleq\,} +\verbdef\singlearr|---->| +\verbdef\doublearr|===>| +\verbdef\tripple|###| + +\renewcommand{\isasymequiv}{$\triangleq$} +\renewcommand{\isasymemptyset}{$\varnothing$} +%%\renewcommand{\isacharunderscore}{\mbox{$\_\!\_$}} +\renewcommand{\isasymUnion}{$\bigcup$} + +\newcommand{\isasymsinglearr}{$\mapsto$} +\newcommand{\isasymdoublearr}{$\Mapsto$} +\newcommand{\isasymtripple}{\tripple} + +\newcommand{\numbered}[1]{\refstepcounter{equation}{\rm(\arabic{equation})}\label{#1}} + +\begin{document} + +\title{Quotients Revisited for Isabelle/HOL} +\author{Cezary Kaliszyk \and Christian Urban} +\institute{C.~Kaliszyk \at University of Tsukuba, Japan + \and C.~Urban \at Technical University of Munich, Germany} +\date{Received: date / Accepted: date} + +\maketitle + +\begin{abstract} +Higher-Order Logic (HOL) is based on a small logic kernel, whose only +mechanism for extension is the introduction of safe definitions and of +non-empty types. Both extensions are often performed in quotient +constructions. To ease the work involved with such quotient constructions, we +re-implemented in the %popular +Isabelle/HOL theorem prover the quotient +package by Homeier. In doing so we extended his work in order to deal with +compositions of quotients and also specified completely the procedure +of lifting theorems from the raw level to the quotient level. +The importance for theorem proving is that many formal +verifications, in order to be feasible, require a convenient reasoning infrastructure +for quotient constructions. +\end{abstract} + +%\keywords{Quotients, Isabelle theorem prover, Higher-Order Logic} + +\bibliographystyle{abbrv} +\input{session} + + + +\end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: t +%%% End: