diff -r eb60f360a200 -r a4743b7cd887 Nominal/Nominal2_Supp.thy --- a/Nominal/Nominal2_Supp.thy Sat Mar 20 13:50:00 2010 +0100 +++ b/Nominal/Nominal2_Supp.thy Sat Mar 20 16:27:51 2010 +0100 @@ -466,6 +466,21 @@ then show "p \ x = x" using eq by simp qed +section {* at_set_avoiding2 *} +lemma at_set_avoiding2 + assumes "finite xs" + and "finite (supp c)" "finite (supp x)" + and "xs \* x" + shows "\p. (p \ xs) \* c \ supp x \* p" +using assms +apply(erule_tac c="(c, x)" in at_set_avoiding) +apply(simp add: supp_Pair) +apply(rule_tac x="p" in exI) +apply(simp add: fresh_star_prod) +apply(subgoal_tac "\a \ supp p. a \ x") +apply(auto simp add: fresh_star_def fresh_def supp_perm)[1] +apply(auto simp add: fresh_star_def fresh_def) +done end \ No newline at end of file