diff -r ec2e0116779e -r a41c3a105104 Quot/Nominal/Terms.thy --- a/Quot/Nominal/Terms.thy Tue Feb 23 16:12:30 2010 +0100 +++ b/Quot/Nominal/Terms.thy Tue Feb 23 18:27:32 2010 +0100 @@ -133,17 +133,18 @@ *} print_theorems -local_setup {* prove_const_rsp @{binding fv_rtrm1_rsp} @{term fv_rtrm1} - (fn _ => fv_rsp_tac @{thms alpha_rtrm1_alpha_bp.inducts} @{thms fv_rtrm1_fv_bp.simps} 1) *} -local_setup {* prove_const_rsp @{binding rVr1_rsp} @{term rVr1} - (fn _ => constr_rsp_tac @{thms alpha1_inj} @{thms fv_rtrm1_rsp} @{thms alpha1_equivp} 1) *} -local_setup {* prove_const_rsp @{binding rAp1_rsp} @{term rAp1} +thm alpha_rtrm1_alpha_bp.induct +local_setup {* prove_const_rsp @{binding fv_rtrm1_rsp} [@{term fv_rtrm1}] + (fn _ => fvbv_rsp_tac @{thm alpha_rtrm1_alpha_bp.inducts(1)} @{thms fv_rtrm1_fv_bp.simps} 1) *} +local_setup {* prove_const_rsp @{binding rVr1_rsp} [@{term rVr1}] (fn _ => constr_rsp_tac @{thms alpha1_inj} @{thms fv_rtrm1_rsp} @{thms alpha1_equivp} 1) *} -local_setup {* prove_const_rsp @{binding rLm1_rsp} @{term rLm1} +local_setup {* prove_const_rsp @{binding rAp1_rsp} [@{term rAp1}] + (fn _ => constr_rsp_tac @{thms alpha1_inj} @{thms fv_rtrm1_rsp} @{thms alpha1_equivp} 1) *} +local_setup {* prove_const_rsp @{binding rLm1_rsp} [@{term rLm1}] (fn _ => constr_rsp_tac @{thms alpha1_inj} @{thms fv_rtrm1_rsp} @{thms alpha1_equivp} 1) *} -local_setup {* prove_const_rsp @{binding rLt1_rsp} @{term rLt1} +local_setup {* prove_const_rsp @{binding rLt1_rsp} [@{term rLt1}] (fn _ => constr_rsp_tac @{thms alpha1_inj} @{thms fv_rtrm1_rsp} @{thms alpha1_equivp} 1) *} -local_setup {* prove_const_rsp @{binding permute_rtrm1_rsp} @{term "permute :: perm \ rtrm1 \ rtrm1"} +local_setup {* prove_const_rsp @{binding permute_rtrm1_rsp} [@{term "permute :: perm \ rtrm1 \ rtrm1"}] (fn _ => asm_simp_tac (HOL_ss addsimps @{thms alpha1_eqvt}) 1) *} lemmas trm1_bp_induct = rtrm1_bp.induct[quot_lifted] @@ -326,20 +327,19 @@ *} print_theorems -(*local_setup {* prove_const_rsp @{binding fv_rtrm2_rsp} @{term fv_rtrm2} - (fn _ => fv_rsp_tac @{thms alpha_rtrm2_alpha_rassign.inducts} @{thms fv_rtrm2_fv_rassign.simps} 1) *} *) -lemma fv_rtrm2_rsp: "x \2 y \ fv_rtrm2 x = fv_rtrm2 y" sorry -lemma bv2_rsp: "x \2b y \ rbv2 x = rbv2 y" sorry - -local_setup {* prove_const_rsp @{binding rVr2_rsp} @{term rVr2} +local_setup {* prove_const_rsp @{binding fv_rtrm2_rsp} [@{term fv_rtrm2}, @{term fv_rassign}] + (fn _ => fvbv_rsp_tac @{thm alpha_rtrm2_alpha_rassign.induct} @{thms fv_rtrm2_fv_rassign.simps} 1) *} +local_setup {* prove_const_rsp @{binding rbv2_rsp} [@{term rbv2}] + (fn _ => fvbv_rsp_tac @{thm alpha_rtrm2_alpha_rassign.inducts(2)} @{thms rbv2.simps} 1) *} +local_setup {* prove_const_rsp @{binding rVr2_rsp} [@{term rVr2}] (fn _ => constr_rsp_tac @{thms alpha2_inj} @{thms fv_rtrm2_rsp} @{thms alpha2_equivp} 1) *} -local_setup {* prove_const_rsp @{binding rAp2_rsp} @{term rAp2} +local_setup {* prove_const_rsp @{binding rAp2_rsp} [@{term rAp2}] (fn _ => constr_rsp_tac @{thms alpha2_inj} @{thms fv_rtrm2_rsp} @{thms alpha2_equivp} 1) *} -local_setup {* prove_const_rsp @{binding rLm2_rsp} @{term rLm2} +local_setup {* prove_const_rsp @{binding rLm2_rsp} [@{term rLm2}] (fn _ => constr_rsp_tac @{thms alpha2_inj} @{thms fv_rtrm2_rsp} @{thms alpha2_equivp} 1) *} -local_setup {* prove_const_rsp @{binding rLt2_rsp} @{term rLt2} - (fn _ => constr_rsp_tac @{thms alpha2_inj} @{thms fv_rtrm2_rsp bv2_rsp} @{thms alpha2_equivp} 1) *} -local_setup {* prove_const_rsp @{binding permute_rtrm2_rsp} @{term "permute :: perm \ rtrm2 \ rtrm2"} +local_setup {* prove_const_rsp @{binding rLt2_rsp} [@{term rLt2}] + (fn _ => constr_rsp_tac @{thms alpha2_inj} @{thms fv_rtrm2_rsp rbv2_rsp} @{thms alpha2_equivp} 1) *} +local_setup {* prove_const_rsp @{binding permute_rtrm2_rsp} [@{term "permute :: perm \ rtrm2 \ rtrm2"}] (fn _ => asm_simp_tac (HOL_ss addsimps @{thms alpha2_eqvt}) 1) *}