diff -r 8ebdef196fd5 -r a031bcaf6719 QuotMain.thy --- a/QuotMain.thy Thu Nov 05 09:38:34 2009 +0100 +++ b/QuotMain.thy Thu Nov 05 09:55:21 2009 +0100 @@ -171,38 +171,6 @@ section {* ATOMIZE *} -text {* - Unabs_def converts a definition given as - - c \ %x. %y. f x y - - to a theorem of the form - - c x y \ f x y - - This function is needed to rewrite the right-hand - side to the left-hand side. -*} - -ML {* -fun unabs_def ctxt def = -let - val (lhs, rhs) = Thm.dest_equals (cprop_of def) - val xs = strip_abs_vars (term_of rhs) - val (_, ctxt') = Variable.add_fixes (map fst xs) ctxt - - val thy = ProofContext.theory_of ctxt' - val cxs = map (cterm_of thy o Free) xs - val new_lhs = Drule.list_comb (lhs, cxs) - - fun get_conv [] = Conv.rewr_conv def - | get_conv (x::xs) = Conv.fun_conv (get_conv xs) -in - get_conv xs new_lhs |> - singleton (ProofContext.export ctxt' ctxt) -end -*} - lemma atomize_eqv[atomize]: shows "(Trueprop A \ Trueprop B) \ (A \ B)" proof