diff -r a30d0bb76869 -r 9f667f6da04f Nominal/Ex/CPS/CPS3_DanvyFilinski.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Nominal/Ex/CPS/CPS3_DanvyFilinski.thy Thu Jun 16 22:00:52 2011 +0900 @@ -0,0 +1,240 @@ +header {* CPS transformation of Danvy and Filinski *} +theory DanvyFilinski imports Lt begin + +nominal_primrec + CPS1 :: "lt \ (lt \ lt) \ lt" ("_*_" [100,100] 100) +and + CPS2 :: "lt \ lt \ lt" ("_^_" [100,100] 100) +where + "eqvt k \ (x~)*k = k (x~)" +| "eqvt k \ (M$N)*k = M*(%m. (N*(%n.((m $ n) $ (Abs c (k (c~)))))))" +| "eqvt k \ atom c \ (x, M) \ (Abs x M)*k = k (Abs x (Abs c (M^(c~))))" +| "\eqvt k \ (CPS1 t k) = t" +| "(x~)^l = l $ (x~)" +| "(M$N)^l = M*(%m. (N*(%n.((m $ n) $ l))))" +| "atom c \ (x, M) \ (Abs x M)^l = l $ (Abs x (Abs c (M^(c~))))" + apply (simp only: eqvt_def CPS1_CPS2_graph_def) + apply (rule, perm_simp, rule) + apply auto + apply (case_tac x) + apply (case_tac a) + apply (case_tac "eqvt b") + apply (rule_tac y="aa" in lt.strong_exhaust) + apply auto[4] + apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh) + apply (simp add: fresh_at_base Abs1_eq_iff) + apply (case_tac b) + apply (rule_tac y="a" in lt.strong_exhaust) + apply auto[3] + apply blast + apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh) + apply (simp add: fresh_at_base Abs1_eq_iff) + apply blast +--"-" + apply (subgoal_tac "Abs c (ka (c~)) = Abs ca (ka (ca~))") + apply (simp only:) + apply (simp add: Abs1_eq_iff) + apply (case_tac "c=ca") + apply simp_all[2] + apply rule + apply (perm_simp) + apply (simp add: eqvt_def) + apply (simp add: fresh_def) + apply (rule contra_subsetD[OF supp_fun_app]) + back + apply (simp add: supp_fun_eqvt lt.supp supp_at_base) +--"-" + apply (rule arg_cong) + back + apply simp + apply (thin_tac "eqvt ka") + apply (rule_tac x="(c, ca, x, xa, M, Ma)" and ?'a="name" in obtain_fresh) + apply (subgoal_tac "Abs c (CPS1_CPS2_sumC (Inr (M, c~))) = Abs a (CPS1_CPS2_sumC (Inr (M, a~)))") + prefer 2 + apply (simp add: Abs1_eq_iff') + apply (case_tac "c = a") + apply simp_all[2] + apply rule + apply (simp add: eqvt_at_def) + apply (simp add: swap_fresh_fresh fresh_Pair_elim) + apply (erule fresh_eqvt_at) + apply (simp add: supp_Inr finite_supp) + apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base) + apply (subgoal_tac "Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~))) = Abs a (CPS1_CPS2_sumC (Inr (Ma, a~)))") + prefer 2 + apply (simp add: Abs1_eq_iff') + apply (case_tac "ca = a") + apply simp_all[2] + apply rule + apply (simp add: eqvt_at_def) + apply (simp add: swap_fresh_fresh fresh_Pair_elim) + apply (erule fresh_eqvt_at) + apply (simp add: supp_Inr finite_supp) + apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base) + apply (simp only: ) + apply (erule Abs_lst1_fcb) + apply (simp add: Abs_fresh_iff) + apply (drule sym) + apply (simp only:) + apply (simp add: Abs_fresh_iff lt.fresh) + apply clarify + apply (erule fresh_eqvt_at) + apply (simp add: supp_Inr finite_supp) + apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base) + apply (drule sym) + apply (drule sym) + apply (drule sym) + apply (simp only:) + apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (M, a~))) = Abs c (CPS1_CPS2_sumC (Inr (M, c~)))") + apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (Ma, a~))) = Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~)))") + apply (thin_tac "atom a \ (c, ca, x, xa, M, Ma)") + apply (simp add: fresh_Pair_elim) + apply (subst iffD1[OF meta_eq_to_obj_eq[OF eqvt_at_def]]) + back + back + back + apply assumption + apply (simp add: Abs1_eq_iff' fresh_Pair_elim fresh_at_base swap_fresh_fresh lt.fresh) + apply (case_tac "(atom x \ atom xa) \ c = ca") + apply simp_all[3] + apply rule + apply (case_tac "c = xa") + apply simp_all[2] + apply (simp add: eqvt_at_def) + apply clarify + apply (smt flip_def permute_flip_at permute_swap_cancel swap_fresh_fresh) + apply (simp add: eqvt_at_def) + apply clarify + apply (smt atom_eq_iff atom_eqvt flip_def fresh_eqvt permute_flip_at permute_swap_cancel swap_at_base_simps(3) swap_fresh_fresh) + apply (case_tac "c = xa") + apply simp + apply (subgoal_tac "((ca \ x) \ (atom x)) \ (ca \ x) \ CPS1_CPS2_sumC (Inr (Ma, ca~))") + apply (simp add: atom_eqvt eqvt_at_def) + apply (simp add: flip_fresh_fresh) + apply (subst fresh_permute_iff) + apply (erule fresh_eqvt_at) + apply (simp add: supp_Inr finite_supp) + apply (simp add: fresh_Inr lt.fresh fresh_at_base fresh_Pair) + apply simp + apply clarify + apply (subgoal_tac "atom ca \ (atom x \ atom xa) \ CPS1_CPS2_sumC (Inr (M, c~))") + apply (simp add: eqvt_at_def) + apply (subgoal_tac "(atom x \ atom xa) \ atom ca \ CPS1_CPS2_sumC (Inr (M, c~))") + apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2) + apply (erule fresh_eqvt_at) + apply (simp add: finite_supp supp_Inr) + apply (simp add: fresh_Inr fresh_Pair lt.fresh) + apply rule + apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2) + apply (simp add: fresh_def supp_at_base) + apply (metis atom_eq_iff permute_swap_cancel2 swap_atom_simps(3)) +--"-" + apply (rule_tac x="(c, ca, x, xa, M, Ma)" and ?'a="name" in obtain_fresh) + apply (subgoal_tac "Abs c (CPS1_CPS2_sumC (Inr (M, c~))) = Abs a (CPS1_CPS2_sumC (Inr (M, a~)))") + prefer 2 + apply (simp add: Abs1_eq_iff') + apply (case_tac "c = a") + apply simp_all[2] + apply rule + apply (simp add: eqvt_at_def) + apply (simp add: swap_fresh_fresh fresh_Pair_elim) + apply (erule fresh_eqvt_at) + apply (simp add: supp_Inr finite_supp) + apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base) + apply (subgoal_tac "Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~))) = Abs a (CPS1_CPS2_sumC (Inr (Ma, a~)))") + prefer 2 + apply (simp add: Abs1_eq_iff') + apply (case_tac "ca = a") + apply simp_all[2] + apply rule + apply (simp add: eqvt_at_def) + apply (simp add: swap_fresh_fresh fresh_Pair_elim) + apply (erule fresh_eqvt_at) + apply (simp add: supp_Inr finite_supp) + apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base) + apply (simp only: ) + apply (erule Abs_lst1_fcb) + apply (simp add: Abs_fresh_iff) + apply (drule sym) + apply (simp only:) + apply (simp add: Abs_fresh_iff lt.fresh) + apply clarify + apply (erule fresh_eqvt_at) + apply (simp add: supp_Inr finite_supp) + apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base) + apply (drule sym) + apply (drule sym) + apply (drule sym) + apply (simp only:) + apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (M, a~))) = Abs c (CPS1_CPS2_sumC (Inr (M, c~)))") + apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (Ma, a~))) = Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~)))") + apply (thin_tac "atom a \ (c, ca, x, xa, M, Ma)") + apply (simp add: fresh_Pair_elim) + apply (subst iffD1[OF meta_eq_to_obj_eq[OF eqvt_at_def]]) + back + back + back + apply assumption + apply (simp add: Abs1_eq_iff' fresh_Pair_elim fresh_at_base swap_fresh_fresh lt.fresh) + apply (case_tac "(atom x \ atom xa) \ c = ca") + apply simp_all[3] + apply rule + apply (case_tac "c = xa") + apply simp_all[2] + apply (simp add: eqvt_at_def) + apply clarify + apply (smt flip_def permute_flip_at permute_swap_cancel swap_fresh_fresh) + apply (simp add: eqvt_at_def) + apply clarify + apply (smt atom_eq_iff atom_eqvt flip_def fresh_eqvt permute_flip_at permute_swap_cancel swap_at_base_simps(3) swap_fresh_fresh) + apply (case_tac "c = xa") + apply simp + apply (subgoal_tac "((ca \ x) \ (atom x)) \ (ca \ x) \ CPS1_CPS2_sumC (Inr (Ma, ca~))") + apply (simp add: atom_eqvt eqvt_at_def) + apply (simp add: flip_fresh_fresh) + apply (subst fresh_permute_iff) + apply (erule fresh_eqvt_at) + apply (simp add: supp_Inr finite_supp) + apply (simp add: fresh_Inr lt.fresh fresh_at_base fresh_Pair) + apply simp + apply clarify + apply (subgoal_tac "atom ca \ (atom x \ atom xa) \ CPS1_CPS2_sumC (Inr (M, c~))") + apply (simp add: eqvt_at_def) + apply (subgoal_tac "(atom x \ atom xa) \ atom ca \ CPS1_CPS2_sumC (Inr (M, c~))") + apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2) + apply (erule fresh_eqvt_at) + apply (simp add: finite_supp supp_Inr) + apply (simp add: fresh_Inr fresh_Pair lt.fresh) + apply rule + apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2) + apply (simp add: fresh_def supp_at_base) + apply (metis atom_eq_iff permute_swap_cancel2 swap_atom_simps(3)) + done + +termination + by lexicographic_order + +definition psi:: "lt => lt" + where "psi V == V*(\x. x)" + +section {* Simple consequence of CPS *} + +lemma value_eq1 : "isValue V \ eqvt k \ V*k = k (psi V)" + apply (cases V rule: lt.exhaust) + apply (auto simp add: psi_def) + apply (subst CPS1.simps) + apply (simp add: eqvt_def eqvt_bound eqvt_lambda) + apply rule + apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh) + apply (subst CPS1.simps(3)) + apply assumption+ + apply (subst CPS1.simps(3)) + apply (simp add: eqvt_def eqvt_bound eqvt_lambda) + apply assumption + apply rule + done + +end + + +