diff -r db158e995bfc -r 9df6144e281b Quot/Examples/LarryInt.thy --- a/Quot/Examples/LarryInt.thy Thu Feb 25 07:48:57 2010 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,395 +0,0 @@ - -header{*The Integers as Equivalence Classes over Pairs of Natural Numbers*} - -theory LarryInt -imports Nat "../Quotient" "../Quotient_Product" -begin - -fun - intrel :: "(nat \ nat) \ (nat \ nat) \ bool" -where - "intrel (x, y) (u, v) = (x + v = u + y)" - -quotient_type int = "nat \ nat" / intrel - by (auto simp add: equivp_def expand_fun_eq) - -instantiation int :: "{zero, one, plus, uminus, minus, times, ord}" -begin - -quotient_definition - Zero_int_def: "0::int" is "(0::nat, 0::nat)" - -quotient_definition - One_int_def: "1::int" is "(1::nat, 0::nat)" - -definition - "add_raw \ \(x, y) (u, v). (x + (u::nat), y + (v::nat))" - -quotient_definition - "(op +) :: int \ int \ int" -is - "add_raw" - -definition - "uminus_raw \ \(x::nat, y::nat). (y, x)" - -quotient_definition - "uminus :: int \ int" -is - "uminus_raw" - -fun - mult_raw::"nat \ nat \ nat \ nat \ nat \ nat" -where - "mult_raw (x, y) (u, v) = (x*u + y*v, x*v + y*u)" - -quotient_definition - "(op *) :: int \ int \ int" -is - "mult_raw" - -definition - "le_raw \ \(x, y) (u, v). (x+v \ u+(y::nat))" - -quotient_definition - le_int_def: "(op \) :: int \ int \ bool" -is - "le_raw" - -definition - less_int_def: "z < (w::int) \ (z \ w & z \ w)" - -definition - diff_int_def: "z - (w::int) \ z + (-w)" - -instance .. - -end - -subsection{*Construction of the Integers*} - -lemma zminus_zminus_raw: - "uminus_raw (uminus_raw z) = z" - by (cases z) (simp add: uminus_raw_def) - -lemma [quot_respect]: - shows "(intrel ===> intrel) uminus_raw uminus_raw" - by (simp add: uminus_raw_def) - -lemma zminus_zminus: - fixes z::"int" - shows "- (- z) = z" - by(lifting zminus_zminus_raw) - -lemma zminus_0_raw: - shows "uminus_raw (0, 0) = (0, 0::nat)" - by (simp add: uminus_raw_def) - -lemma zminus_0: - shows "- 0 = (0::int)" - by (lifting zminus_0_raw) - -subsection{*Integer Addition*} - -lemma zminus_zadd_distrib_raw: - shows "uminus_raw (add_raw z w) = add_raw (uminus_raw z) (uminus_raw w)" -by (cases z, cases w) - (auto simp add: add_raw_def uminus_raw_def) - -lemma [quot_respect]: - shows "(intrel ===> intrel ===> intrel) add_raw add_raw" -by (simp add: add_raw_def) - -lemma zminus_zadd_distrib: - fixes z w::"int" - shows "- (z + w) = (- z) + (- w)" - by(lifting zminus_zadd_distrib_raw) - -lemma zadd_commute_raw: - shows "add_raw z w = add_raw w z" -by (cases z, cases w) - (simp add: add_raw_def) - -lemma zadd_commute: - fixes z w::"int" - shows "(z::int) + w = w + z" - by (lifting zadd_commute_raw) - -lemma zadd_assoc_raw: - shows "add_raw (add_raw z1 z2) z3 = add_raw z1 (add_raw z2 z3)" - by (cases z1, cases z2, cases z3) (simp add: add_raw_def) - -lemma zadd_assoc: - fixes z1 z2 z3::"int" - shows "(z1 + z2) + z3 = z1 + (z2 + z3)" - by (lifting zadd_assoc_raw) - -lemma zadd_0_raw: - shows "add_raw (0, 0) z = z" - by (simp add: add_raw_def) - - -text {*also for the instance declaration int :: plus_ac0*} -lemma zadd_0: - fixes z::"int" - shows "0 + z = z" - by (lifting zadd_0_raw) - -lemma zadd_zminus_inverse_raw: - shows "intrel (add_raw (uminus_raw z) z) (0, 0)" - by (cases z) (simp add: add_raw_def uminus_raw_def) - -lemma zadd_zminus_inverse2: - fixes z::"int" - shows "(- z) + z = 0" - by (lifting zadd_zminus_inverse_raw) - -subsection{*Integer Multiplication*} - -lemma zmult_zminus_raw: - shows "mult_raw (uminus_raw z) w = uminus_raw (mult_raw z w)" -apply(cases z, cases w) -apply(simp add: uminus_raw_def) -done - -lemma mult_raw_fst: - assumes a: "intrel x z" - shows "intrel (mult_raw x y) (mult_raw z y)" -using a -apply(cases x, cases y, cases z) -apply(auto simp add: mult_raw.simps intrel.simps) -apply(rename_tac u v w x y z) -apply(subgoal_tac "u*w + z*w = y*w + v*w & u*x + z*x = y*x + v*x") -apply(simp add: mult_ac) -apply(simp add: add_mult_distrib [symmetric]) -done - -lemma mult_raw_snd: - assumes a: "intrel x z" - shows "intrel (mult_raw y x) (mult_raw y z)" -using a -apply(cases x, cases y, cases z) -apply(auto simp add: mult_raw.simps intrel.simps) -apply(rename_tac u v w x y z) -apply(subgoal_tac "u*w + z*w = y*w + v*w & u*x + z*x = y*x + v*x") -apply(simp add: mult_ac) -apply(simp add: add_mult_distrib [symmetric]) -done - -lemma [quot_respect]: - shows "(intrel ===> intrel ===> intrel) mult_raw mult_raw" -apply(simp only: fun_rel_def) -apply(rule allI | rule impI)+ -apply(rule equivp_transp[OF int_equivp]) -apply(rule mult_raw_fst) -apply(assumption) -apply(rule mult_raw_snd) -apply(assumption) -done - -lemma zmult_zminus: - fixes z w::"int" - shows "(- z) * w = - (z * w)" - by (lifting zmult_zminus_raw) - -lemma zmult_commute_raw: - shows "mult_raw z w = mult_raw w z" -apply(cases z, cases w) -apply(simp add: add_ac mult_ac) -done - -lemma zmult_commute: - fixes z w::"int" - shows "z * w = w * z" - by (lifting zmult_commute_raw) - -lemma zmult_assoc_raw: - shows "mult_raw (mult_raw z1 z2) z3 = mult_raw z1 (mult_raw z2 z3)" -apply(cases z1, cases z2, cases z3) -apply(simp add: add_mult_distrib2 mult_ac) -done - -lemma zmult_assoc: - fixes z1 z2 z3::"int" - shows "(z1 * z2) * z3 = z1 * (z2 * z3)" - by (lifting zmult_assoc_raw) - -lemma zadd_mult_distrib_raw: - shows "mult_raw (add_raw z1 z2) w = add_raw (mult_raw z1 w) (mult_raw z2 w)" -apply(cases z1, cases z2, cases w) -apply(simp add: add_mult_distrib2 mult_ac add_raw_def) -done - -lemma zadd_zmult_distrib: - fixes z1 z2 w::"int" - shows "(z1 + z2) * w = (z1 * w) + (z2 * w)" - by(lifting zadd_mult_distrib_raw) - -lemma zadd_zmult_distrib2: - fixes w z1 z2::"int" - shows "w * (z1 + z2) = (w * z1) + (w * z2)" - by (simp add: zmult_commute [of w] zadd_zmult_distrib) - -lemma zdiff_zmult_distrib: - fixes w z1 z2::"int" - shows "(z1 - z2) * w = (z1 * w) - (z2 * w)" - by (simp add: diff_int_def zadd_zmult_distrib zmult_zminus) - -lemma zdiff_zmult_distrib2: - fixes w z1 z2::"int" - shows "w * (z1 - z2) = (w * z1) - (w * z2)" - by (simp add: zmult_commute [of w] zdiff_zmult_distrib) - -lemmas int_distrib = - zadd_zmult_distrib zadd_zmult_distrib2 - zdiff_zmult_distrib zdiff_zmult_distrib2 - -lemma zmult_1_raw: - shows "mult_raw (1, 0) z = z" - by (cases z) (auto) - -lemma zmult_1: - fixes z::"int" - shows "1 * z = z" - by (lifting zmult_1_raw) - -lemma zmult_1_right: - fixes z::"int" - shows "z * 1 = z" - by (rule trans [OF zmult_commute zmult_1]) - -lemma zero_not_one: - shows "\(intrel (0, 0) (1::nat, 0::nat))" - by auto - -text{*The Integers Form A Ring*} -instance int :: comm_ring_1 -proof - fix i j k :: int - show "(i + j) + k = i + (j + k)" by (simp add: zadd_assoc) - show "i + j = j + i" by (simp add: zadd_commute) - show "0 + i = i" by (rule zadd_0) - show "- i + i = 0" by (rule zadd_zminus_inverse2) - show "i - j = i + (-j)" by (simp add: diff_int_def) - show "(i * j) * k = i * (j * k)" by (rule zmult_assoc) - show "i * j = j * i" by (rule zmult_commute) - show "1 * i = i" by (rule zmult_1) - show "(i + j) * k = i * k + j * k" by (simp add: int_distrib) - show "0 \ (1::int)" by (lifting zero_not_one) -qed - - -subsection{*The @{text "\"} Ordering*} - -lemma zle_refl_raw: - shows "le_raw w w" - by (cases w) (simp add: le_raw_def) - -lemma [quot_respect]: - shows "(intrel ===> intrel ===> op =) le_raw le_raw" - by (auto) (simp_all add: le_raw_def) - -lemma zle_refl: - fixes w::"int" - shows "w \ w" - by (lifting zle_refl_raw) - - -lemma zle_trans_raw: - shows "\le_raw i j; le_raw j k\ \ le_raw i k" -apply(cases i, cases j, cases k) -apply(auto simp add: le_raw_def) -done - -lemma zle_trans: - fixes i j k::"int" - shows "\i \ j; j \ k\ \ i \ k" - by (lifting zle_trans_raw) - -lemma zle_anti_sym_raw: - shows "\le_raw z w; le_raw w z\ \ intrel z w" -apply(cases z, cases w) -apply(auto iff: le_raw_def) -done - -lemma zle_anti_sym: - fixes z w::"int" - shows "\z \ w; w \ z\ \ z = w" - by (lifting zle_anti_sym_raw) - - -(* Axiom 'order_less_le' of class 'order': *) -lemma zless_le: - fixes w z::"int" - shows "(w < z) = (w \ z & w \ z)" - by (simp add: less_int_def) - -instance int :: order -apply (default) -apply(auto simp add: zless_le zle_anti_sym)[1] -apply(rule zle_refl) -apply(erule zle_trans, assumption) -apply(erule zle_anti_sym, assumption) -done - -(* Axiom 'linorder_linear' of class 'linorder': *) - -lemma zle_linear_raw: - shows "le_raw z w \ le_raw w z" -apply(cases w, cases z) -apply(auto iff: le_raw_def) -done - -lemma zle_linear: - fixes z w::"int" - shows "z \ w \ w \ z" - by (lifting zle_linear_raw) - -instance int :: linorder -apply(default) -apply(rule zle_linear) -done - -lemma zadd_left_mono_raw: - shows "le_raw i j \ le_raw (add_raw k i) (add_raw k j)" -apply(cases k) -apply(auto simp add: add_raw_def le_raw_def) -done - -lemma zadd_left_mono: - fixes i j::"int" - shows "i \ j \ k + i \ k + j" - by (lifting zadd_left_mono_raw) - - -subsection{*Magnitide of an Integer, as a Natural Number: @{term nat}*} - -definition - "nat_raw \ \(x, y).x - (y::nat)" - -quotient_definition - "nat2::int \ nat" -is - "nat_raw" - -abbreviation - "less_raw x y \ (le_raw x y \ \(intrel x y))" - -lemma nat_le_eq_zle_raw: - shows "less_raw (0, 0) w \ le_raw (0, 0) z \ (nat_raw w \ nat_raw z) = (le_raw w z)" - apply (cases w) - apply (cases z) - apply (simp add: nat_raw_def le_raw_def) - by auto - -lemma [quot_respect]: - shows "(intrel ===> op =) nat_raw nat_raw" - by (auto iff: nat_raw_def) - -lemma nat_le_eq_zle: - fixes w z::"int" - shows "0 < w \ 0 \ z \ (nat2 w \ nat2 z) = (w\z)" - unfolding less_int_def - by (lifting nat_le_eq_zle_raw) - -end