diff -r db158e995bfc -r 9df6144e281b Quot/Examples/LarryDatatype.thy --- a/Quot/Examples/LarryDatatype.thy Thu Feb 25 07:48:57 2010 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,394 +0,0 @@ -theory LarryDatatype -imports Main "../Quotient" "../Quotient_Syntax" -begin - -subsection{*Defining the Free Algebra*} - -datatype - freemsg = NONCE nat - | MPAIR freemsg freemsg - | CRYPT nat freemsg - | DECRYPT nat freemsg - -inductive - msgrel::"freemsg \ freemsg \ bool" (infixl "\" 50) -where - CD: "CRYPT K (DECRYPT K X) \ X" -| DC: "DECRYPT K (CRYPT K X) \ X" -| NONCE: "NONCE N \ NONCE N" -| MPAIR: "\X \ X'; Y \ Y'\ \ MPAIR X Y \ MPAIR X' Y'" -| CRYPT: "X \ X' \ CRYPT K X \ CRYPT K X'" -| DECRYPT: "X \ X' \ DECRYPT K X \ DECRYPT K X'" -| SYM: "X \ Y \ Y \ X" -| TRANS: "\X \ Y; Y \ Z\ \ X \ Z" - -lemmas msgrel.intros[intro] - -text{*Proving that it is an equivalence relation*} - -lemma msgrel_refl: "X \ X" -by (induct X, (blast intro: msgrel.intros)+) - -theorem equiv_msgrel: "equivp msgrel" -proof (rule equivpI) - show "reflp msgrel" by (simp add: reflp_def msgrel_refl) - show "symp msgrel" by (simp add: symp_def, blast intro: msgrel.SYM) - show "transp msgrel" by (simp add: transp_def, blast intro: msgrel.TRANS) -qed - -subsection{*Some Functions on the Free Algebra*} - -subsubsection{*The Set of Nonces*} - -fun - freenonces :: "freemsg \ nat set" -where - "freenonces (NONCE N) = {N}" -| "freenonces (MPAIR X Y) = freenonces X \ freenonces Y" -| "freenonces (CRYPT K X) = freenonces X" -| "freenonces (DECRYPT K X) = freenonces X" - -theorem msgrel_imp_eq_freenonces: - assumes a: "U \ V" - shows "freenonces U = freenonces V" - using a by (induct) (auto) - -subsubsection{*The Left Projection*} - -text{*A function to return the left part of the top pair in a message. It will -be lifted to the initial algrebra, to serve as an example of that process.*} -fun - freeleft :: "freemsg \ freemsg" -where - "freeleft (NONCE N) = NONCE N" -| "freeleft (MPAIR X Y) = X" -| "freeleft (CRYPT K X) = freeleft X" -| "freeleft (DECRYPT K X) = freeleft X" - -text{*This theorem lets us prove that the left function respects the -equivalence relation. It also helps us prove that MPair - (the abstract constructor) is injective*} -lemma msgrel_imp_eqv_freeleft_aux: - shows "freeleft U \ freeleft U" - by (induct rule: freeleft.induct) (auto) - -theorem msgrel_imp_eqv_freeleft: - assumes a: "U \ V" - shows "freeleft U \ freeleft V" - using a - by (induct) (auto intro: msgrel_imp_eqv_freeleft_aux) - -subsubsection{*The Right Projection*} - -text{*A function to return the right part of the top pair in a message.*} -fun - freeright :: "freemsg \ freemsg" -where - "freeright (NONCE N) = NONCE N" -| "freeright (MPAIR X Y) = Y" -| "freeright (CRYPT K X) = freeright X" -| "freeright (DECRYPT K X) = freeright X" - -text{*This theorem lets us prove that the right function respects the -equivalence relation. It also helps us prove that MPair - (the abstract constructor) is injective*} -lemma msgrel_imp_eqv_freeright_aux: - shows "freeright U \ freeright U" - by (induct rule: freeright.induct) (auto) - -theorem msgrel_imp_eqv_freeright: - assumes a: "U \ V" - shows "freeright U \ freeright V" - using a - by (induct) (auto intro: msgrel_imp_eqv_freeright_aux) - -subsubsection{*The Discriminator for Constructors*} - -text{*A function to distinguish nonces, mpairs and encryptions*} -fun - freediscrim :: "freemsg \ int" -where - "freediscrim (NONCE N) = 0" - | "freediscrim (MPAIR X Y) = 1" - | "freediscrim (CRYPT K X) = freediscrim X + 2" - | "freediscrim (DECRYPT K X) = freediscrim X - 2" - -text{*This theorem helps us prove @{term "Nonce N \ MPair X Y"}*} -theorem msgrel_imp_eq_freediscrim: - assumes a: "U \ V" - shows "freediscrim U = freediscrim V" - using a by (induct) (auto) - -subsection{*The Initial Algebra: A Quotiented Message Type*} - -quotient_type msg = freemsg / msgrel - by (rule equiv_msgrel) - -text{*The abstract message constructors*} - -quotient_definition - "Nonce :: nat \ msg" -is - "NONCE" - -quotient_definition - "MPair :: msg \ msg \ msg" -is - "MPAIR" - -quotient_definition - "Crypt :: nat \ msg \ msg" -is - "CRYPT" - -quotient_definition - "Decrypt :: nat \ msg \ msg" -is - "DECRYPT" - -lemma [quot_respect]: - shows "(op = ===> op \ ===> op \) CRYPT CRYPT" -by (auto intro: CRYPT) - -lemma [quot_respect]: - shows "(op = ===> op \ ===> op \) DECRYPT DECRYPT" -by (auto intro: DECRYPT) - -text{*Establishing these two equations is the point of the whole exercise*} -theorem CD_eq [simp]: - shows "Crypt K (Decrypt K X) = X" - by (lifting CD) - -theorem DC_eq [simp]: - shows "Decrypt K (Crypt K X) = X" - by (lifting DC) - -subsection{*The Abstract Function to Return the Set of Nonces*} - -quotient_definition - "nonces:: msg \ nat set" -is - "freenonces" - -text{*Now prove the four equations for @{term nonces}*} - -lemma [quot_respect]: - shows "(op \ ===> op =) freenonces freenonces" - by (simp add: msgrel_imp_eq_freenonces) - -lemma [quot_respect]: - shows "(op = ===> op \) NONCE NONCE" - by (simp add: NONCE) - -lemma nonces_Nonce [simp]: - shows "nonces (Nonce N) = {N}" - by (lifting freenonces.simps(1)) - -lemma [quot_respect]: - shows " (op \ ===> op \ ===> op \) MPAIR MPAIR" - by (simp add: MPAIR) - -lemma nonces_MPair [simp]: - shows "nonces (MPair X Y) = nonces X \ nonces Y" - by (lifting freenonces.simps(2)) - -lemma nonces_Crypt [simp]: - shows "nonces (Crypt K X) = nonces X" - by (lifting freenonces.simps(3)) - -lemma nonces_Decrypt [simp]: - shows "nonces (Decrypt K X) = nonces X" - by (lifting freenonces.simps(4)) - -subsection{*The Abstract Function to Return the Left Part*} - -quotient_definition - "left:: msg \ msg" -is - "freeleft" - -lemma [quot_respect]: - shows "(op \ ===> op \) freeleft freeleft" - by (simp add: msgrel_imp_eqv_freeleft) - -lemma left_Nonce [simp]: - shows "left (Nonce N) = Nonce N" - by (lifting freeleft.simps(1)) - -lemma left_MPair [simp]: - shows "left (MPair X Y) = X" - by (lifting freeleft.simps(2)) - -lemma left_Crypt [simp]: - shows "left (Crypt K X) = left X" - by (lifting freeleft.simps(3)) - -lemma left_Decrypt [simp]: - shows "left (Decrypt K X) = left X" - by (lifting freeleft.simps(4)) - -subsection{*The Abstract Function to Return the Right Part*} - -quotient_definition - "right:: msg \ msg" -is - "freeright" - -text{*Now prove the four equations for @{term right}*} - -lemma [quot_respect]: - shows "(op \ ===> op \) freeright freeright" - by (simp add: msgrel_imp_eqv_freeright) - -lemma right_Nonce [simp]: - shows "right (Nonce N) = Nonce N" - by (lifting freeright.simps(1)) - -lemma right_MPair [simp]: - shows "right (MPair X Y) = Y" - by (lifting freeright.simps(2)) - -lemma right_Crypt [simp]: - shows "right (Crypt K X) = right X" - by (lifting freeright.simps(3)) - -lemma right_Decrypt [simp]: - shows "right (Decrypt K X) = right X" - by (lifting freeright.simps(4)) - -subsection{*Injectivity Properties of Some Constructors*} - -lemma NONCE_imp_eq: - shows "NONCE m \ NONCE n \ m = n" - by (drule msgrel_imp_eq_freenonces, simp) - -text{*Can also be proved using the function @{term nonces}*} -lemma Nonce_Nonce_eq [iff]: - shows "(Nonce m = Nonce n) = (m = n)" -proof - assume "Nonce m = Nonce n" - then show "m = n" by (lifting NONCE_imp_eq) -next - assume "m = n" - then show "Nonce m = Nonce n" by simp -qed - -lemma MPAIR_imp_eqv_left: - shows "MPAIR X Y \ MPAIR X' Y' \ X \ X'" - by (drule msgrel_imp_eqv_freeleft) (simp) - -lemma MPair_imp_eq_left: - assumes eq: "MPair X Y = MPair X' Y'" - shows "X = X'" - using eq by (lifting MPAIR_imp_eqv_left) - -lemma MPAIR_imp_eqv_right: - shows "MPAIR X Y \ MPAIR X' Y' \ Y \ Y'" - by (drule msgrel_imp_eqv_freeright) (simp) - -lemma MPair_imp_eq_right: - shows "MPair X Y = MPair X' Y' \ Y = Y'" - by (lifting MPAIR_imp_eqv_right) - -theorem MPair_MPair_eq [iff]: - shows "(MPair X Y = MPair X' Y') = (X=X' & Y=Y')" - by (blast dest: MPair_imp_eq_left MPair_imp_eq_right) - -lemma NONCE_neqv_MPAIR: - shows "\(NONCE m \ MPAIR X Y)" - by (auto dest: msgrel_imp_eq_freediscrim) - -theorem Nonce_neq_MPair [iff]: - shows "Nonce N \ MPair X Y" - by (lifting NONCE_neqv_MPAIR) - -text{*Example suggested by a referee*} - -lemma CRYPT_NONCE_neq_NONCE: - shows "\(CRYPT K (NONCE M) \ NONCE N)" - by (auto dest: msgrel_imp_eq_freediscrim) - -theorem Crypt_Nonce_neq_Nonce: - shows "Crypt K (Nonce M) \ Nonce N" - by (lifting CRYPT_NONCE_neq_NONCE) - -text{*...and many similar results*} -lemma CRYPT2_NONCE_neq_NONCE: - shows "\(CRYPT K (CRYPT K' (NONCE M)) \ NONCE N)" - by (auto dest: msgrel_imp_eq_freediscrim) - -theorem Crypt2_Nonce_neq_Nonce: - shows "Crypt K (Crypt K' (Nonce M)) \ Nonce N" - by (lifting CRYPT2_NONCE_neq_NONCE) - -theorem Crypt_Crypt_eq [iff]: - shows "(Crypt K X = Crypt K X') = (X=X')" -proof - assume "Crypt K X = Crypt K X'" - hence "Decrypt K (Crypt K X) = Decrypt K (Crypt K X')" by simp - thus "X = X'" by simp -next - assume "X = X'" - thus "Crypt K X = Crypt K X'" by simp -qed - -theorem Decrypt_Decrypt_eq [iff]: - shows "(Decrypt K X = Decrypt K X') = (X=X')" -proof - assume "Decrypt K X = Decrypt K X'" - hence "Crypt K (Decrypt K X) = Crypt K (Decrypt K X')" by simp - thus "X = X'" by simp -next - assume "X = X'" - thus "Decrypt K X = Decrypt K X'" by simp -qed - -lemma msg_induct_aux: - shows "\\N. P (Nonce N); - \X Y. \P X; P Y\ \ P (MPair X Y); - \K X. P X \ P (Crypt K X); - \K X. P X \ P (Decrypt K X)\ \ P msg" - by (lifting freemsg.induct) - -lemma msg_induct [case_names Nonce MPair Crypt Decrypt, cases type: msg]: - assumes N: "\N. P (Nonce N)" - and M: "\X Y. \P X; P Y\ \ P (MPair X Y)" - and C: "\K X. P X \ P (Crypt K X)" - and D: "\K X. P X \ P (Decrypt K X)" - shows "P msg" - using N M C D by (rule msg_induct_aux) - -subsection{*The Abstract Discriminator*} - -text{*However, as @{text Crypt_Nonce_neq_Nonce} above illustrates, we don't -need this function in order to prove discrimination theorems.*} - -quotient_definition - "discrim:: msg \ int" -is - "freediscrim" - -text{*Now prove the four equations for @{term discrim}*} - -lemma [quot_respect]: - shows "(op \ ===> op =) freediscrim freediscrim" - by (auto simp add: msgrel_imp_eq_freediscrim) - -lemma discrim_Nonce [simp]: - shows "discrim (Nonce N) = 0" - by (lifting freediscrim.simps(1)) - -lemma discrim_MPair [simp]: - shows "discrim (MPair X Y) = 1" - by (lifting freediscrim.simps(2)) - -lemma discrim_Crypt [simp]: - shows "discrim (Crypt K X) = discrim X + 2" - by (lifting freediscrim.simps(3)) - -lemma discrim_Decrypt [simp]: - shows "discrim (Decrypt K X) = discrim X - 2" - by (lifting freediscrim.simps(4)) - -end -