diff -r db158e995bfc -r 9df6144e281b Attic/Quot/Quotient_List.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Attic/Quot/Quotient_List.thy Thu Feb 25 07:57:17 2010 +0100 @@ -0,0 +1,232 @@ +(* Title: Quotient_List.thy + Author: Cezary Kaliszyk and Christian Urban +*) +theory Quotient_List +imports Quotient Quotient_Syntax List +begin + +section {* Quotient infrastructure for the list type. *} + +fun + list_rel +where + "list_rel R [] [] = True" +| "list_rel R (x#xs) [] = False" +| "list_rel R [] (x#xs) = False" +| "list_rel R (x#xs) (y#ys) = (R x y \ list_rel R xs ys)" + +declare [[map list = (map, list_rel)]] + +lemma split_list_all: + shows "(\x. P x) \ P [] \ (\x xs. P (x#xs))" + apply(auto) + apply(case_tac x) + apply(simp_all) + done + +lemma map_id[id_simps]: + shows "map id = id" + apply(simp add: expand_fun_eq) + apply(rule allI) + apply(induct_tac x) + apply(simp_all) + done + + +lemma list_rel_reflp: + shows "equivp R \ list_rel R xs xs" + apply(induct xs) + apply(simp_all add: equivp_reflp) + done + +lemma list_rel_symp: + assumes a: "equivp R" + shows "list_rel R xs ys \ list_rel R ys xs" + apply(induct xs ys rule: list_induct2') + apply(simp_all) + apply(rule equivp_symp[OF a]) + apply(simp) + done + +lemma list_rel_transp: + assumes a: "equivp R" + shows "list_rel R xs1 xs2 \ list_rel R xs2 xs3 \ list_rel R xs1 xs3" + apply(induct xs1 xs2 arbitrary: xs3 rule: list_induct2') + apply(simp_all) + apply(case_tac xs3) + apply(simp_all) + apply(rule equivp_transp[OF a]) + apply(auto) + done + +lemma list_equivp[quot_equiv]: + assumes a: "equivp R" + shows "equivp (list_rel R)" + apply(rule equivpI) + unfolding reflp_def symp_def transp_def + apply(subst split_list_all) + apply(simp add: equivp_reflp[OF a] list_rel_reflp[OF a]) + apply(blast intro: list_rel_symp[OF a]) + apply(blast intro: list_rel_transp[OF a]) + done + +lemma list_rel_rel: + assumes q: "Quotient R Abs Rep" + shows "list_rel R r s = (list_rel R r r \ list_rel R s s \ (map Abs r = map Abs s))" + apply(induct r s rule: list_induct2') + apply(simp_all) + using Quotient_rel[OF q] + apply(metis) + done + +lemma list_quotient[quot_thm]: + assumes q: "Quotient R Abs Rep" + shows "Quotient (list_rel R) (map Abs) (map Rep)" + unfolding Quotient_def + apply(subst split_list_all) + apply(simp add: Quotient_abs_rep[OF q] abs_o_rep[OF q] map_id) + apply(rule conjI) + apply(rule allI) + apply(induct_tac a) + apply(simp) + apply(simp) + apply(simp add: Quotient_rep_reflp[OF q]) + apply(rule allI)+ + apply(rule list_rel_rel[OF q]) + done + + +lemma cons_prs_aux: + assumes q: "Quotient R Abs Rep" + shows "(map Abs) ((Rep h) # (map Rep t)) = h # t" + by (induct t) (simp_all add: Quotient_abs_rep[OF q]) + +lemma cons_prs[quot_preserve]: + assumes q: "Quotient R Abs Rep" + shows "(Rep ---> (map Rep) ---> (map Abs)) (op #) = (op #)" + by (simp only: expand_fun_eq fun_map_def cons_prs_aux[OF q]) + (simp) + +lemma cons_rsp[quot_respect]: + assumes q: "Quotient R Abs Rep" + shows "(R ===> list_rel R ===> list_rel R) (op #) (op #)" + by (auto) + +lemma nil_prs[quot_preserve]: + assumes q: "Quotient R Abs Rep" + shows "map Abs [] = []" + by simp + +lemma nil_rsp[quot_respect]: + assumes q: "Quotient R Abs Rep" + shows "list_rel R [] []" + by simp + +lemma map_prs_aux: + assumes a: "Quotient R1 abs1 rep1" + and b: "Quotient R2 abs2 rep2" + shows "(map abs2) (map ((abs1 ---> rep2) f) (map rep1 l)) = map f l" + by (induct l) + (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) + + +lemma map_prs[quot_preserve]: + assumes a: "Quotient R1 abs1 rep1" + and b: "Quotient R2 abs2 rep2" + shows "((abs1 ---> rep2) ---> (map rep1) ---> (map abs2)) map = map" + by (simp only: expand_fun_eq fun_map_def map_prs_aux[OF a b]) + (simp) + + +lemma map_rsp[quot_respect]: + assumes q1: "Quotient R1 Abs1 Rep1" + and q2: "Quotient R2 Abs2 Rep2" + shows "((R1 ===> R2) ===> (list_rel R1) ===> list_rel R2) map map" + apply(simp) + apply(rule allI)+ + apply(rule impI) + apply(rule allI)+ + apply (induct_tac xa ya rule: list_induct2') + apply simp_all + done + +lemma foldr_prs_aux: + assumes a: "Quotient R1 abs1 rep1" + and b: "Quotient R2 abs2 rep2" + shows "abs2 (foldr ((abs1 ---> abs2 ---> rep2) f) (map rep1 l) (rep2 e)) = foldr f l e" + by (induct l) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) + +lemma foldr_prs[quot_preserve]: + assumes a: "Quotient R1 abs1 rep1" + and b: "Quotient R2 abs2 rep2" + shows "((abs1 ---> abs2 ---> rep2) ---> (map rep1) ---> rep2 ---> abs2) foldr = foldr" + by (simp only: expand_fun_eq fun_map_def foldr_prs_aux[OF a b]) + (simp) + +lemma foldl_prs_aux: + assumes a: "Quotient R1 abs1 rep1" + and b: "Quotient R2 abs2 rep2" + shows "abs1 (foldl ((abs1 ---> abs2 ---> rep1) f) (rep1 e) (map rep2 l)) = foldl f e l" + by (induct l arbitrary:e) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) + + +lemma foldl_prs[quot_preserve]: + assumes a: "Quotient R1 abs1 rep1" + and b: "Quotient R2 abs2 rep2" + shows "((abs1 ---> abs2 ---> rep1) ---> rep1 ---> (map rep2) ---> abs1) foldl = foldl" + by (simp only: expand_fun_eq fun_map_def foldl_prs_aux[OF a b]) + (simp) + +lemma list_rel_empty: + shows "list_rel R [] b \ length b = 0" + by (induct b) (simp_all) + +lemma list_rel_len: + shows "list_rel R a b \ length a = length b" + apply (induct a arbitrary: b) + apply (simp add: list_rel_empty) + apply (case_tac b) + apply simp_all + done + +(* induct_tac doesn't accept 'arbitrary', so we manually 'spec' *) +lemma foldl_rsp[quot_respect]: + assumes q1: "Quotient R1 Abs1 Rep1" + and q2: "Quotient R2 Abs2 Rep2" + shows "((R1 ===> R2 ===> R1) ===> R1 ===> list_rel R2 ===> R1) foldl foldl" + apply(auto) + apply (subgoal_tac "R1 xa ya \ list_rel R2 xb yb \ R1 (foldl x xa xb) (foldl y ya yb)") + apply simp + apply (rule_tac x="xa" in spec) + apply (rule_tac x="ya" in spec) + apply (rule_tac xs="xb" and ys="yb" in list_induct2) + apply (rule list_rel_len) + apply (simp_all) + done + +lemma foldr_rsp[quot_respect]: + assumes q1: "Quotient R1 Abs1 Rep1" + and q2: "Quotient R2 Abs2 Rep2" + shows "((R1 ===> R2 ===> R2) ===> list_rel R1 ===> R2 ===> R2) foldr foldr" + apply auto + apply(subgoal_tac "R2 xb yb \ list_rel R1 xa ya \ R2 (foldr x xa xb) (foldr y ya yb)") + apply simp + apply (rule_tac xs="xa" and ys="ya" in list_induct2) + apply (rule list_rel_len) + apply (simp_all) + done + +lemma list_rel_eq[id_simps]: + shows "(list_rel (op =)) = (op =)" + unfolding expand_fun_eq + apply(rule allI)+ + apply(induct_tac x xa rule: list_induct2') + apply(simp_all) + done + +lemma list_rel_refl: + assumes a: "\x y. R x y = (R x = R y)" + shows "list_rel R x x" + by (induct x) (auto simp add: a) + +end