diff -r 35c570891a3a -r 98236fbd8aa6 Nominal/nominal_dt_alpha.ML --- a/Nominal/nominal_dt_alpha.ML Mon Nov 29 08:01:09 2010 +0000 +++ b/Nominal/nominal_dt_alpha.ML Fri Dec 03 13:51:07 2010 +0000 @@ -593,14 +593,20 @@ (** proves the equivp predicate for all alphas **) +val reflp_def' = + @{lemma "reflp R == !x. R x x" by (simp add: reflp_def refl_on_def)} + +val symp_def' = + @{lemma "symp R == !x y . R x y --> R y x" by (simp add: symp_def sym_def)} + val transp_def' = @{lemma "transp R == !x y. R x y --> (!z. R y z --> R x z)" - by (rule eq_reflection, auto simp add: transp_def)} + by (rule eq_reflection, auto simp add: trans_def transp_def)} fun raw_prove_equivp alphas alpha_bns refl symm trans ctxt = let - val refl' = map (fold_rule @{thms reflp_def[THEN eq_reflection]} o atomize) refl - val symm' = map (fold_rule @{thms symp_def[THEN eq_reflection]} o atomize) symm + val refl' = map (fold_rule [reflp_def'] o atomize) refl + val symm' = map (fold_rule [symp_def'] o atomize) symm val trans' = map (fold_rule [transp_def'] o atomize) trans fun prep_goal t =