diff -r 0854af516f14 -r 9568f9f31822 Nominal/Ex/CoreHaskell.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Nominal/Ex/CoreHaskell.thy Sun May 09 12:38:59 2010 +0100 @@ -0,0 +1,673 @@ +theory CoreHaskell +imports "../NewParser" +begin + +(* core haskell *) + +atom_decl var +atom_decl cvar +atom_decl tvar + +nominal_datatype tkind = + KStar +| KFun "tkind" "tkind" +and ckind = + CKEq "ty" "ty" +and ty = + TVar "tvar" +| TC "string" +| TApp "ty" "ty" +| TFun "string" "ty_lst" +| TAll tv::"tvar" "tkind" T::"ty" bind tv in T +| TEq "ckind" "ty" +and ty_lst = + TsNil +| TsCons "ty" "ty_lst" +and co = + CVar "cvar" +| CConst "string" +| CApp "co" "co" +| CFun "string" "co_lst" +| CAll cv::"cvar" "ckind" C::"co" bind cv in C +| CEq "ckind" "co" +| CRefl "ty" +| CSym "co" +| CCir "co" "co" +| CAt "co" "ty" +| CLeft "co" +| CRight "co" +| CSim "co" "co" +| CRightc "co" +| CLeftc "co" +| CCoe "co" "co" +and co_lst = + CsNil +| CsCons "co" "co_lst" +and trm = + Var "var" +| K "string" +| LAMT tv::"tvar" "tkind" t::"trm" bind tv in t +| LAMC cv::"cvar" "ckind" t::"trm" bind cv in t +| AppT "trm" "ty" +| AppC "trm" "co" +| Lam v::"var" "ty" t::"trm" bind v in t +| App "trm" "trm" +| Let x::"var" "ty" "trm" t::"trm" bind x in t +| Case "trm" "assoc_lst" +| Cast "trm" "ty" --"ty is supposed to be a coercion type only" +and assoc_lst = + ANil +| ACons p::"pat" t::"trm" "assoc_lst" bind "bv p" in t +and pat = + Kpat "string" "tvars" "cvars" "vars" +and vars = + VsNil +| VsCons "var" "ty" "vars" +and tvars = + TvsNil +| TvsCons "tvar" "tkind" "tvars" +and cvars = + CvsNil +| CvsCons "cvar" "ckind" "cvars" +binder + bv :: "pat \ atom list" +and bv_vs :: "vars \ atom list" +and bv_tvs :: "tvars \ atom list" +and bv_cvs :: "cvars \ atom list" +where + "bv (Kpat s tvts tvcs vs) = append (bv_tvs tvts) (append (bv_cvs tvcs) (bv_vs vs))" +| "bv_vs VsNil = []" +| "bv_vs (VsCons v k t) = (atom v) # bv_vs t" +| "bv_tvs TvsNil = []" +| "bv_tvs (TvsCons v k t) = (atom v) # bv_tvs t" +| "bv_cvs CvsNil = []" +| "bv_cvs (CvsCons v k t) = (atom v) # bv_cvs t" + +lemmas fv_supp=tkind_ckind_ty_ty_lst_co_co_lst_trm_assoc_lst_pat_vars_tvars_cvars.supp(1-9,11,13,15) +lemmas supp=tkind_ckind_ty_ty_lst_co_co_lst_trm_assoc_lst_pat_vars_tvars_cvars.fv[simplified fv_supp] +lemmas perm=tkind_ckind_ty_ty_lst_co_co_lst_trm_assoc_lst_pat_vars_tvars_cvars.perm +lemmas eq_iff=tkind_ckind_ty_ty_lst_co_co_lst_trm_assoc_lst_pat_vars_tvars_cvars.eq_iff +lemmas inducts=tkind_ckind_ty_ty_lst_co_co_lst_trm_assoc_lst_pat_vars_tvars_cvars.inducts + +lemmas alpha_inducts=alpha_tkind_raw_alpha_ckind_raw_alpha_ty_raw_alpha_ty_lst_raw_alpha_co_raw_alpha_co_lst_raw_alpha_trm_raw_alpha_assoc_lst_raw_alpha_pat_raw_alpha_vars_raw_alpha_tvars_raw_alpha_cvars_raw_alpha_bv_raw_alpha_bv_vs_raw_alpha_bv_tvs_raw_alpha_bv_cvs_raw.inducts +lemmas alpha_intros=alpha_tkind_raw_alpha_ckind_raw_alpha_ty_raw_alpha_ty_lst_raw_alpha_co_raw_alpha_co_lst_raw_alpha_trm_raw_alpha_assoc_lst_raw_alpha_pat_raw_alpha_vars_raw_alpha_tvars_raw_alpha_cvars_raw_alpha_bv_raw_alpha_bv_vs_raw_alpha_bv_tvs_raw_alpha_bv_cvs_raw.intros + +lemma fresh_star_minus_perm: "as \* - p = as \* (p :: perm)" + unfolding fresh_star_def Ball_def + by auto (simp_all add: fresh_minus_perm) + +primrec permute_bv_vs_raw +where "permute_bv_vs_raw p VsNil_raw = VsNil_raw" +| "permute_bv_vs_raw p (VsCons_raw v t l) = VsCons_raw (p \ v) t (permute_bv_vs_raw p l)" +primrec permute_bv_cvs_raw +where "permute_bv_cvs_raw p CvsNil_raw = CvsNil_raw" +| "permute_bv_cvs_raw p (CvsCons_raw v t l) = CvsCons_raw (p \ v) t (permute_bv_cvs_raw p l)" +primrec permute_bv_tvs_raw +where "permute_bv_tvs_raw p TvsNil_raw = TvsNil_raw" +| "permute_bv_tvs_raw p (TvsCons_raw v t l) = TvsCons_raw (p \ v) t (permute_bv_tvs_raw p l)" +primrec permute_bv_raw +where "permute_bv_raw p (Kpat_raw c l1 l2 l3) = + Kpat_raw c (permute_bv_tvs_raw p l1) (permute_bv_cvs_raw p l2) (permute_bv_vs_raw p l3)" + +quotient_definition "permute_bv_vs :: perm \ vars \ vars" +is "permute_bv_vs_raw" +quotient_definition "permute_bv_cvs :: perm \ cvars \ cvars" +is "permute_bv_cvs_raw" +quotient_definition "permute_bv_tvs :: perm \ tvars \ tvars" +is "permute_bv_tvs_raw" +quotient_definition "permute_bv :: perm \ pat \ pat" +is "permute_bv_raw" + +lemma rsp_pre: + "alpha_tvars_raw d a \ alpha_tvars_raw (permute_bv_tvs_raw x d) (permute_bv_tvs_raw x a)" + "alpha_cvars_raw e b \ alpha_cvars_raw (permute_bv_cvs_raw x e) (permute_bv_cvs_raw x b)" + "alpha_vars_raw f c \ alpha_vars_raw (permute_bv_vs_raw x f) (permute_bv_vs_raw x c)" + apply (erule_tac [!] alpha_inducts) + apply (simp_all only: alpha_intros perm permute_bv_tvs_raw.simps permute_bv_cvs_raw.simps permute_bv_vs_raw.simps) + done + +lemma [quot_respect]: + "(op = ===> alpha_pat_raw ===> alpha_pat_raw) permute_bv_raw permute_bv_raw" + "(op = ===> alpha_tvars_raw ===> alpha_tvars_raw) permute_bv_tvs_raw permute_bv_tvs_raw" + "(op = ===> alpha_cvars_raw ===> alpha_cvars_raw) permute_bv_cvs_raw permute_bv_cvs_raw" + "(op = ===> alpha_vars_raw ===> alpha_vars_raw) permute_bv_vs_raw permute_bv_vs_raw" + apply (simp_all add: rsp_pre) + apply clarify + apply (erule_tac alpha_inducts) + apply (simp_all) + apply (rule alpha_intros) + apply (simp_all add: rsp_pre) + done + +thm permute_bv_raw.simps[no_vars] + permute_bv_vs_raw.simps[quot_lifted] + permute_bv_cvs_raw.simps[quot_lifted] + permute_bv_tvs_raw.simps[quot_lifted] + +lemma permute_bv_pre: + "permute_bv p (Kpat c l1 l2 l3) = + Kpat c (permute_bv_tvs p l1) (permute_bv_cvs p l2) (permute_bv_vs p l3)" + by (lifting permute_bv_raw.simps) + +lemmas permute_bv[simp] = + permute_bv_pre + permute_bv_vs_raw.simps[quot_lifted] + permute_bv_cvs_raw.simps[quot_lifted] + permute_bv_tvs_raw.simps[quot_lifted] + +lemma perm_bv1: + "p \ bv_cvs b = bv_cvs (permute_bv_cvs p b)" + "p \ bv_tvs c = bv_tvs (permute_bv_tvs p c)" + "p \ bv_vs d = bv_vs (permute_bv_vs p d)" + apply(induct b rule: inducts(12)) + apply(simp_all add:permute_bv eqvts) + apply(induct c rule: inducts(11)) + apply(simp_all add:permute_bv eqvts) + apply(induct d rule: inducts(10)) + apply(simp_all add:permute_bv eqvts) + done + +lemma perm_bv2: + "p \ bv l = bv (permute_bv p l)" + apply(induct l rule: inducts(9)) + apply(simp_all add:permute_bv) + apply(simp add: perm_bv1[symmetric]) + apply(simp add: eqvts) + done + +lemma alpha_perm_bn1: + "alpha_bv_tvs tvars (permute_bv_tvs q tvars)" + "alpha_bv_cvs cvars (permute_bv_cvs q cvars)" + "alpha_bv_vs vars (permute_bv_vs q vars)" + apply(induct tvars rule: inducts(11)) + apply(simp_all add:permute_bv eqvts eq_iff) + apply(induct cvars rule: inducts(12)) + apply(simp_all add:permute_bv eqvts eq_iff) + apply(induct vars rule: inducts(10)) + apply(simp_all add:permute_bv eqvts eq_iff) + done + +lemma alpha_perm_bn: + "alpha_bv pat (permute_bv q pat)" + apply(induct pat rule: inducts(9)) + apply(simp_all add:permute_bv eqvts eq_iff alpha_perm_bn1) + done + +lemma ACons_subst: + "supp (Abs_lst (bv pat) trm) \* q \ (ACons pat trm al) = ACons (permute_bv q pat) (q \ trm) al" + apply (simp only: eq_iff) + apply (simp add: alpha_perm_bn) + apply (rule_tac x="q" in exI) + apply (simp add: alphas) + apply (simp add: perm_bv2[symmetric]) + apply (simp add: eqvts[symmetric]) + apply (simp add: supp_abs) + apply (simp add: fv_supp) + apply (rule supp_perm_eq[symmetric]) + apply (subst supp_finite_atom_set) + apply (rule finite_Diff) + apply (simp add: finite_supp) + apply (assumption) + done + +lemma permute_bv_zero1: + "permute_bv_cvs 0 b = b" + "permute_bv_tvs 0 c = c" + "permute_bv_vs 0 d = d" + apply(induct b rule: inducts(12)) + apply(simp_all add:permute_bv eqvts) + apply(induct c rule: inducts(11)) + apply(simp_all add:permute_bv eqvts) + apply(induct d rule: inducts(10)) + apply(simp_all add:permute_bv eqvts) + done + +lemma permute_bv_zero2: + "permute_bv 0 a = a" + apply(induct a rule: inducts(9)) + apply(simp_all add:permute_bv eqvts permute_bv_zero1) + done + +lemma fv_alpha1: "fv_bv_tvs x \* pa \ alpha_bv_tvs (pa \ x) x" + apply (induct x rule: inducts(11)) + apply (simp_all add: eq_iff fresh_star_union) + done + +lemma fv_alpha2: "fv_bv_cvs x \* pa \ alpha_bv_cvs (pa \ x) x" +apply (induct x rule: inducts(12)) +apply (rule TrueI)+ +apply (simp_all add: eq_iff fresh_star_union) +apply (subst supp_perm_eq) +apply (simp_all add: fv_supp) +done + +lemma fv_alpha3: "fv_bv_vs x \* pa \ alpha_bv_vs (pa \ x) x" +apply (induct x rule: inducts(10)) +apply (rule TrueI)+ +apply (simp_all add: fresh_star_union eq_iff) +apply (subst supp_perm_eq) +apply (simp_all add: fv_supp) +done + +lemma fv_alpha: "fv_bv x \* pa \ alpha_bv (pa \ x) x" +apply (induct x rule: inducts(9)) +apply (rule TrueI)+ +apply (simp_all add: eq_iff fresh_star_union) +apply (simp add: fv_alpha1 fv_alpha2 fv_alpha3) +apply (subst supp_perm_eq) +apply (simp_all add: fv_supp) +done + +lemma fin1: "finite (fv_bv_tvs x)" +apply (induct x rule: inducts(11)) +apply (simp_all add: fv_supp finite_supp) +done + +lemma fin2: "finite (fv_bv_cvs x)" +apply (induct x rule: inducts(12)) +apply (simp_all add: fv_supp finite_supp) +done + +lemma fin3: "finite (fv_bv_vs x)" +apply (induct x rule: inducts(10)) +apply (simp_all add: fv_supp finite_supp) +done + +lemma fin_fv_bv: "finite (fv_bv x)" +apply (induct x rule: inducts(9)) +apply (rule TrueI)+ +defer +apply (rule TrueI)+ +apply (simp add: fin1 fin2 fin3) +apply (rule finite_supp) +done + +lemma finb1: "finite (set (bv_tvs x))" +apply (induct x rule: inducts(11)) +apply (simp_all add: fv_supp finite_supp) +done + +lemma finb2: "finite (set (bv_cvs x))" +apply (induct x rule: inducts(12)) +apply (simp_all add: fv_supp finite_supp) +done + +lemma finb3: "finite (set (bv_vs x))" +apply (induct x rule: inducts(10)) +apply (simp_all add: fv_supp finite_supp) +done + +lemma fin_bv: "finite (set (bv x))" +apply (induct x rule: inducts(9)) +apply (simp_all add: finb1 finb2 finb3) +done + +lemma strong_induction_principle: + assumes a01: "\b. P1 b KStar" + and a02: "\tkind1 tkind2 b. \\c. P1 c tkind1; \c. P1 c tkind2\ \ P1 b (KFun tkind1 tkind2)" + and a03: "\ty1 ty2 b. \\c. P3 c ty1; \c. P3 c ty2\ \ P2 b (CKEq ty1 ty2)" + and a04: "\tvar b. P3 b (TVar tvar)" + and a05: "\string b. P3 b (TC string)" + and a06: "\ty1 ty2 b. \\c. P3 c ty1; \c. P3 c ty2\ \ P3 b (TApp ty1 ty2)" + and a07: "\string ty_lst b. \\c. P4 c ty_lst\ \ P3 b (TFun string ty_lst)" + and a08: "\tvar tkind ty b. \\c. P1 c tkind; \c. P3 c ty; atom tvar \ b\ + \ P3 b (TAll tvar tkind ty)" + and a09: "\ck ty b. \\c. P2 c ck; \c. P3 c ty\ \ P3 b (TEq ck ty)" + and a10: "\b. P4 b TsNil" + and a11: "\ty ty_lst b. \\c. P3 c ty; \c. P4 c ty_lst\ \ P4 b (TsCons ty ty_lst)" + and a12: "\string b. P5 b (CVar string)" + and a12a:"\str b. P5 b (CConst str)" + and a13: "\co1 co2 b. \\c. P5 c co1; \c. P5 c co2\ \ P5 b (CApp co1 co2)" + and a14: "\string co_lst b. \\c. P6 c co_lst\ \ P5 b (CFun string co_lst)" + and a15: "\tvar ckind co b. \\c. P2 c ckind; \c. P5 c co; atom tvar \ b\ + \ P5 b (CAll tvar ckind co)" + and a16: "\ck co b. \\c. P2 c ck; \c. P5 c co\ \ P5 b (CEq ck co)" + and a17: "\ty b. \\c. P3 c ty\ \ P5 b (CRefl ty)" + and a17a: "\co b. \\c. P5 c co\ \ P5 b (CSym co)" + and a18: "\co1 co2 b. \\c. P5 c co1; \c. P5 c co2\ \ P5 b (CCir co1 co2)" + and a18a:"\co ty b. \\c. P5 c co; \c. P3 c ty\ \ P5 b (CAt co ty)" + and a19: "\co b. \\c. P5 c co\ \ P5 b (CLeft co)" + and a20: "\co b. \\c. P5 c co\ \ P5 b (CRight co)" + and a21: "\co1 co2 b. \\c. P5 c co1; \c. P5 c co2\ \ P5 b (CSim co1 co2)" + and a22: "\co b. \\c. P5 c co\ \ P5 b (CRightc co)" + and a23: "\co b. \\c. P5 c co\ \ P5 b (CLeftc co)" + and a24: "\co1 co2 b. \\c. P5 c co1; \c. P5 c co2\ \ P5 b (CCoe co1 co2)" + and a25: "\b. P6 b CsNil" + and a26: "\co co_lst b. \\c. P5 c co; \c. P6 c co_lst\ \ P6 b (CsCons co co_lst)" + and a27: "\var b. P7 b (Var var)" + and a28: "\string b. P7 b (K string)" + and a29: "\tvar tkind trm b. \\c. P1 c tkind; \c. P7 c trm; atom tvar \ b\ + \ P7 b (LAMT tvar tkind trm)" + and a30: "\tvar ckind trm b. \\c. P2 c ckind; \c. P7 c trm; atom tvar \ b\ + \ P7 b (LAMC tvar ckind trm)" + and a31: "\trm ty b. \\c. P7 c trm; \c. P3 c ty\ \ P7 b (AppT trm ty)" + and a31a:"\trm co b. \\c. P7 c trm; \c. P5 c co\ \ P7 b (AppC trm co)" + and a32: "\var ty trm b. \\c. P3 c ty; \c. P7 c trm; atom var \ b\ \ P7 b (Lam var ty trm)" + and a33: "\trm1 trm2 b. \\c. P7 c trm1; \c. P7 c trm2\ \ P7 b (App trm1 trm2)" + and a34: "\var ty trm1 trm2 b. \\c. P3 c ty; \c. P7 c trm1; \c. P7 c trm2; atom var \ b\ + \ P7 b (Let var ty trm1 trm2)" + and a35: "\trm assoc_lst b. \\c. P7 c trm; \c. P8 c assoc_lst\ \ P7 b (Case trm assoc_lst)" + and a36: "\trm ty b. \\c. P7 c trm; \c. P3 c ty\ \ P7 b (Cast trm ty)" + and a37: "\b. P8 b ANil" + and a38: "\pat trm assoc_lst b. \\c. P9 c pat; \c. P7 c trm; \c. P8 c assoc_lst; set (bv (pat)) \* b\ + \ P8 b (ACons pat trm assoc_lst)" + and a39: "\string tvars cvars vars b. \\c. P11 c tvars; \c. P12 c cvars; \c. P10 c vars\ + \ P9 b (Kpat string tvars cvars vars)" + and a40: "\b. P10 b VsNil" + and a41: "\var ty vars b. \\c. P3 c ty; \c. P10 c vars\ \ P10 b (VsCons var ty vars)" + and a42: "\b. P11 b TvsNil" + and a43: "\tvar tkind tvars b. \\c. P1 c tkind; \c. P11 c tvars\ + \ P11 b (TvsCons tvar tkind tvars)" + and a44: "\b. P12 b CvsNil" + and a45: "\tvar ckind cvars b. \\c. P2 c ckind; \c. P12 c cvars\ + \ P12 b (CvsCons tvar ckind cvars)" + shows "P1 (a :: 'a :: pt) tkind \ + P2 (b :: 'b :: pt) ckind \ + P3 (c :: 'c :: {pt,fs}) ty \ + P4 (d :: 'd :: pt) ty_lst \ + P5 (e :: 'e :: {pt,fs}) co \ + P6 (f :: 'f :: pt) co_lst \ + P7 (g :: 'g :: {pt,fs}) trm \ + P8 (h :: 'h :: {pt,fs}) assoc_lst \ + P9 (i :: 'i :: pt) pat \ + P10 (j :: 'j :: pt) vars \ + P11 (k :: 'k :: pt) tvars \ + P12 (l :: 'l :: pt) cvars" +proof - + have a1: "(\p a. P1 a (p \ tkind))" and "(\p b. P2 b (p \ ckind))" and "(\p c. P3 c (p \ ty))" and "(\p d. P4 d (p \ ty_lst))" and "(\p e. P5 e (p \ co))" and " (\p f. P6 f (p \ co_lst))" and "(\p g. P7 g (p \ trm))" and "(\p h. P8 h (p \ assoc_lst))" and a1:"(\p q i. P9 i (permute_bv p (q \ pat)))" and a2:"(\p q j. P10 j (permute_bv_vs q (p \ vars)))" and a3:"(\p q k. P11 k ( permute_bv_tvs q (p \ tvars)))" and a4:"(\p q l. P12 l (permute_bv_cvs q (p \ cvars)))" + apply (induct rule: tkind_ckind_ty_ty_lst_co_co_lst_trm_assoc_lst_pat_vars_tvars_cvars.inducts) + apply (tactic {* ALLGOALS (REPEAT o rtac allI) *}) + apply (tactic {* ALLGOALS (TRY o SOLVED' (simp_tac @{simpset} THEN_ALL_NEW resolve_tac @{thms assms} THEN_ALL_NEW asm_full_simp_tac @{simpset})) *}) + +(* GOAL1 *) + apply(subgoal_tac "\pa. ((pa \ (atom (p \ tvar))) \ c \ + supp (Abs (p \ {atom tvar}) (p \ ty)) \* pa)") + apply clarify + apply (simp only: perm) + apply(rule_tac t="TAll (p \ tvar) (p \ tkind) (p \ ty)" + and s="TAll (pa \ p \ tvar) (p \ tkind) (pa \ p \ ty)" in subst) + apply (simp add: eq_iff) + apply (rule_tac x="-pa" in exI) + apply (simp add: alphas eqvts eqvts_raw supp_abs fv_supp) + apply (rule_tac t="supp (pa \ p \ ty) - {atom (pa \ p \ tvar)}" + and s="pa \ (p \ supp ty - {p \ atom tvar})" in subst) + apply (simp add: eqvts) + apply (simp add: eqvts[symmetric]) + apply (rule conjI) + apply (rule supp_perm_eq) + apply (simp add: eqvts) + apply (subst supp_finite_atom_set) + apply (simp add: eqvts[symmetric] finite_eqvt[symmetric] finite_supp) + apply (simp add: eqvts) + apply (simp add: eqvts) + apply (subst supp_perm_eq) + apply (subst supp_finite_atom_set) + apply (simp add: eqvts[symmetric] finite_eqvt[symmetric] finite_supp) + apply (simp add: eqvts) + apply assumption + apply (simp add: fresh_star_minus_perm) + apply (rule a08) + apply simp + apply(rotate_tac 1) + apply(erule_tac x="(pa + p)" in allE) + apply simp + apply (simp add: eqvts eqvts_raw) + apply (rule at_set_avoiding2_atom) + apply (simp add: finite_supp) + apply (simp add: finite_supp) + apply (simp add: fresh_def) + apply (simp only: supp_abs eqvts) + apply blast + +(* GOAL2 *) + apply(subgoal_tac "\pa. ((pa \ (atom (p \ cvar))) \ e \ + supp (Abs (p \ {atom cvar}) (p \ co)) \* pa)") + apply clarify + apply (simp only: perm) + apply(rule_tac t="CAll (p \ cvar) (p \ ckind) (p \ co)" + and s="CAll (pa \ p \ cvar) (p \ ckind) (pa \ p \ co)" in subst) + apply (simp add: eq_iff) + apply (rule_tac x="-pa" in exI) + apply (simp add: alphas eqvts eqvts_raw supp_abs fv_supp) + apply (rule_tac t="supp (pa \ p \ co) - {atom (pa \ p \ cvar)}" + and s="pa \ (p \ supp co - {p \ atom cvar})" in subst) + apply (simp add: eqvts) + apply (simp add: eqvts[symmetric]) + apply (rule conjI) + apply (rule supp_perm_eq) + apply (simp add: eqvts) + apply (subst supp_finite_atom_set) + apply (simp add: eqvts[symmetric] finite_eqvt[symmetric] finite_supp) + apply (simp add: eqvts) + apply (simp add: eqvts) + apply (subst supp_perm_eq) + apply (subst supp_finite_atom_set) + apply (simp add: eqvts[symmetric] finite_eqvt[symmetric] finite_supp) + apply (simp add: eqvts) + apply assumption + apply (simp add: fresh_star_minus_perm) + apply (rule a15) + apply simp + apply(rotate_tac 1) + apply(erule_tac x="(pa + p)" in allE) + apply simp + apply (simp add: eqvts eqvts_raw) + apply (rule at_set_avoiding2_atom) + apply (simp add: finite_supp) + apply (simp add: finite_supp) + apply (simp add: fresh_def) + apply (simp only: supp_abs eqvts) + apply blast + + +(* GOAL3 a copy-and-paste of Goal2 with consts and variable names changed *) + apply(subgoal_tac "\pa. ((pa \ (atom (p \ tvar))) \ g \ + supp (Abs (p \ {atom tvar}) (p \ trm)) \* pa)") + apply clarify + apply (simp only: perm) + apply(rule_tac t="LAMT (p \ tvar) (p \ tkind) (p \ trm)" + and s="LAMT (pa \ p \ tvar) (p \ tkind) (pa \ p \ trm)" in subst) + apply (simp add: eq_iff) + apply (rule_tac x="-pa" in exI) + apply (simp add: alphas eqvts eqvts_raw supp_abs fv_supp) + apply (rule_tac t="supp (pa \ p \ trm) - {atom (pa \ p \ tvar)}" + and s="pa \ (p \ supp trm - {p \ atom tvar})" in subst) + apply (simp add: eqvts) + apply (simp add: eqvts[symmetric]) + apply (rule conjI) + apply (rule supp_perm_eq) + apply (simp add: eqvts) + apply (subst supp_finite_atom_set) + apply (simp add: eqvts[symmetric] finite_eqvt[symmetric] finite_supp) + apply (simp add: eqvts) + apply (simp add: eqvts) + apply (subst supp_perm_eq) + apply (subst supp_finite_atom_set) + apply (simp add: eqvts[symmetric] finite_eqvt[symmetric] finite_supp) + apply (simp add: eqvts) + apply assumption + apply (simp add: fresh_star_minus_perm) + apply (rule a29) + apply simp + apply(rotate_tac 1) + apply(erule_tac x="(pa + p)" in allE) + apply simp + apply (simp add: eqvts eqvts_raw) + apply (rule at_set_avoiding2_atom) + apply (simp add: finite_supp) + apply (simp add: finite_supp) + apply (simp add: fresh_def) + apply (simp only: supp_abs eqvts) + apply blast + +(* GOAL4 a copy-and-paste *) + apply(subgoal_tac "\pa. ((pa \ (atom (p \ cvar))) \ g \ + supp (Abs (p \ {atom cvar}) (p \ trm)) \* pa)") + apply clarify + apply (simp only: perm) + apply(rule_tac t="LAMC (p \ cvar) (p \ ckind) (p \ trm)" + and s="LAMC (pa \ p \ cvar) (p \ ckind) (pa \ p \ trm)" in subst) + apply (simp add: eq_iff) + apply (rule_tac x="-pa" in exI) + apply (simp add: alphas eqvts eqvts_raw supp_abs fv_supp) + apply (rule_tac t="supp (pa \ p \ trm) - {atom (pa \ p \ cvar)}" + and s="pa \ (p \ supp trm - {p \ atom cvar})" in subst) + apply (simp add: eqvts) + apply (simp add: eqvts[symmetric]) + apply (rule conjI) + apply (rule supp_perm_eq) + apply (simp add: eqvts) + apply (subst supp_finite_atom_set) + apply (simp add: eqvts[symmetric] finite_eqvt[symmetric] finite_supp) + apply (simp add: eqvts) + apply (simp add: eqvts) + apply (subst supp_perm_eq) + apply (subst supp_finite_atom_set) + apply (simp add: eqvts[symmetric] finite_eqvt[symmetric] finite_supp) + apply (simp add: eqvts) + apply assumption + apply (simp add: fresh_star_minus_perm) + apply (rule a30) + apply simp + apply(rotate_tac 1) + apply(erule_tac x="(pa + p)" in allE) + apply simp + apply (simp add: eqvts eqvts_raw) + apply (rule at_set_avoiding2_atom) + apply (simp add: finite_supp) + apply (simp add: finite_supp) + apply (simp add: fresh_def) + apply (simp only: supp_abs eqvts) + apply blast + + +(* GOAL5 a copy-and-paste *) + apply(subgoal_tac "\pa. ((pa \ (atom (p \ var))) \ g \ + supp (Abs (p \ {atom var}) (p \ trm)) \* pa)") + apply clarify + apply (simp only: perm) + apply(rule_tac t="Lam (p \ var) (p \ ty) (p \ trm)" + and s="Lam (pa \ p \ var) (p \ ty) (pa \ p \ trm)" in subst) + apply (simp add: eq_iff) + apply (rule_tac x="-pa" in exI) + apply (simp add: alphas eqvts eqvts_raw supp_abs fv_supp) + apply (rule_tac t="supp (pa \ p \ trm) - {atom (pa \ p \ var)}" + and s="pa \ (p \ supp trm - {p \ atom var})" in subst) + apply (simp add: eqvts) + apply (simp add: eqvts[symmetric]) + apply (rule conjI) + apply (rule supp_perm_eq) + apply (simp add: eqvts) + apply (subst supp_finite_atom_set) + apply (simp add: eqvts[symmetric] finite_eqvt[symmetric] finite_supp) + apply (simp add: eqvts) + apply (simp add: eqvts) + apply (subst supp_perm_eq) + apply (subst supp_finite_atom_set) + apply (simp add: eqvts[symmetric] finite_eqvt[symmetric] finite_supp) + apply (simp add: eqvts) + apply assumption + apply (simp add: fresh_star_minus_perm) + apply (rule a32) + apply simp + apply(rotate_tac 1) + apply(erule_tac x="(pa + p)" in allE) + apply simp + apply (simp add: eqvts eqvts_raw) + apply (rule at_set_avoiding2_atom) + apply (simp add: finite_supp) + apply (simp add: finite_supp) + apply (simp add: fresh_def) + apply (simp only: supp_abs eqvts) + apply blast + + +(* GOAL6 a copy-and-paste *) + apply(subgoal_tac "\pa. ((pa \ (atom (p \ var))) \ g \ + supp (Abs (p \ {atom var}) (p \ trm2)) \* pa)") + apply clarify + apply (simp only: perm) + apply(rule_tac t="Let (p \ var) (p \ ty) (p \ trm1) (p \ trm2)" + and s="Let (pa \ p \ var) (p \ ty) (p \ trm1) (pa \ p \ trm2)" in subst) + apply (simp add: eq_iff) + apply (rule_tac x="-pa" in exI) + apply (simp add: alphas eqvts eqvts_raw supp_abs fv_supp) + apply (rule_tac t="supp (pa \ p \ trm2) - {atom (pa \ p \ var)}" + and s="pa \ (p \ supp trm2 - {p \ atom var})" in subst) + apply (simp add: eqvts) + apply (simp add: eqvts[symmetric]) + apply (rule conjI) + apply (rule supp_perm_eq) + apply (simp add: eqvts) + apply (subst supp_finite_atom_set) + apply (simp add: eqvts[symmetric] finite_eqvt[symmetric] finite_supp) + apply (simp add: eqvts) + apply (simp add: eqvts) + apply (subst supp_perm_eq) + apply (subst supp_finite_atom_set) + apply (simp add: eqvts[symmetric] finite_eqvt[symmetric] finite_supp) + apply (simp add: eqvts) + apply assumption + apply (simp add: fresh_star_minus_perm) + apply (rule a34) + apply simp + apply simp + apply(rotate_tac 2) + apply(erule_tac x="(pa + p)" in allE) + apply simp + apply (simp add: eqvts eqvts_raw) + apply (rule at_set_avoiding2_atom) + apply (simp add: finite_supp) + apply (simp add: finite_supp) + apply (simp add: fresh_def) + apply (simp only: supp_abs eqvts) + apply blast + +(* MAIN ACons Goal *) + apply(subgoal_tac "\pa. ((pa \ (set (bv (p \ pat)))) \* h \ + supp (Abs_lst (p \ (bv pat)) (p \ trm)) \* pa)") + apply clarify + apply (simp only: perm eqvts) + apply (subst ACons_subst) + apply assumption + apply (rule a38) + apply simp + apply(rotate_tac 1) + apply(erule_tac x="(pa + p)" in allE) + apply simp + apply simp + apply (simp add: perm_bv2[symmetric]) + apply (simp add: eqvts eqvts_raw) + apply (rule at_set_avoiding2) + apply (simp add: fin_bv) + apply (simp add: finite_supp) + apply (simp add: supp_abs) + apply (simp add: finite_supp) + apply (simp add: fresh_star_def fresh_def supp_abs eqvts) + done + then have b: "P1 a (0 \ tkind)" and "P2 b (0 \ ckind)" "P3 c (0 \ ty)" and "P4 d (0 \ ty_lst)" and "P5 e (0 \ co)" and "P6 f (0 \ co_lst)" and "P7 g (0 \ trm)" and "P8 h (0 \ assoc_lst)" by (blast+) + moreover have "P9 i (permute_bv 0 (0 \ pat))" and "P10 j (permute_bv_vs 0 (0 \ vars))" and "P11 k (permute_bv_tvs 0 (0 \ tvars))" and "P12 l (permute_bv_cvs 0 (0 \ cvars))" using a1 a2 a3 a4 by (blast+) + ultimately show ?thesis by (simp_all add: permute_bv_zero1 permute_bv_zero2) +qed + +section {* test about equivariance for alpha *} + +(* this should not be an equivariance rule *) +(* for the moment, we force it to be *) + +(*declare permute_pure[eqvt]*) +(*setup {* Context.theory_map (Nominal_ThmDecls.add_thm @{thm "permute_pure"}) *) + +thm eqvts +thm eqvts_raw + +declare permute_tkind_raw_permute_ckind_raw_permute_ty_raw_permute_ty_lst_raw_permute_co_raw_permute_co_lst_raw_permute_trm_raw_permute_assoc_lst_raw_permute_pat_raw_permute_vars_raw_permute_tvars_raw_permute_cvars_raw.simps[eqvt] +declare alpha_gen_eqvt[eqvt] + +equivariance alpha_tkind_raw + +thm eqvts +thm eqvts_raw + +end +