diff -r aa157e957655 -r 91b079db7380 Quot/Examples/Larry.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Quot/Examples/Larry.thy Thu Dec 10 18:28:30 2009 +0100 @@ -0,0 +1,387 @@ +theory Larry +imports Main "../QuotMain" +begin + +subsection{*Defining the Free Algebra*} + +datatype + freemsg = NONCE nat + | MPAIR freemsg freemsg + | CRYPT nat freemsg + | DECRYPT nat freemsg + +inductive + msgrel::"freemsg \ freemsg \ bool" (infixl "\" 50) +where + CD: "CRYPT K (DECRYPT K X) \ X" +| DC: "DECRYPT K (CRYPT K X) \ X" +| NONCE: "NONCE N \ NONCE N" +| MPAIR: "\X \ X'; Y \ Y'\ \ MPAIR X Y \ MPAIR X' Y'" +| CRYPT: "X \ X' \ CRYPT K X \ CRYPT K X'" +| DECRYPT: "X \ X' \ DECRYPT K X \ DECRYPT K X'" +| SYM: "X \ Y \ Y \ X" +| TRANS: "\X \ Y; Y \ Z\ \ X \ Z" + +text{*Proving that it is an equivalence relation*} + +lemma msgrel_refl: "X \ X" +by (induct X, (blast intro: msgrel.intros)+) + +theorem equiv_msgrel: "equivp msgrel" +proof (rule equivpI) + show "reflp msgrel" by (simp add: reflp_def msgrel_refl) + show "symp msgrel" by (simp add: symp_def, blast intro: msgrel.SYM) + show "transp msgrel" by (simp add: transp_def, blast intro: msgrel.TRANS) +qed + +subsection{*Some Functions on the Free Algebra*} + +subsubsection{*The Set of Nonces*} + +primrec + freenonces :: "freemsg \ nat set" +where + "freenonces (NONCE N) = {N}" +| "freenonces (MPAIR X Y) = freenonces X \ freenonces Y" +| "freenonces (CRYPT K X) = freenonces X" +| "freenonces (DECRYPT K X) = freenonces X" + +theorem msgrel_imp_eq_freenonces: + "U \ V \ freenonces U = freenonces V" +by (erule msgrel.induct, auto) + +subsubsection{*The Left Projection*} + +text{*A function to return the left part of the top pair in a message. It will +be lifted to the initial algrebra, to serve as an example of that process.*} +fun + freeleft :: "freemsg \ freemsg" +where + "freeleft (NONCE N) = NONCE N" +| "freeleft (MPAIR X Y) = X" +| "freeleft (CRYPT K X) = freeleft X" +| "freeleft (DECRYPT K X) = freeleft X" + +text{*This theorem lets us prove that the left function respects the +equivalence relation. It also helps us prove that MPair + (the abstract constructor) is injective*} +lemma msgrel_imp_eqv_freeleft_aux: + shows "freeleft U \ freeleft U" +apply(induct rule: freeleft.induct) +apply(auto intro: msgrel.intros) +done + +theorem msgrel_imp_eqv_freeleft: + "U \ V \ freeleft U \ freeleft V" +apply(erule msgrel.induct) +apply(auto intro: msgrel.intros msgrel_imp_eqv_freeleft_aux) +done + +subsubsection{*The Right Projection*} + +text{*A function to return the right part of the top pair in a message.*} +fun + freeright :: "freemsg \ freemsg" +where + "freeright (NONCE N) = NONCE N" +| "freeright (MPAIR X Y) = Y" +| "freeright (CRYPT K X) = freeright X" +| "freeright (DECRYPT K X) = freeright X" + +text{*This theorem lets us prove that the right function respects the +equivalence relation. It also helps us prove that MPair + (the abstract constructor) is injective*} +lemma msgrel_imp_eqv_freeright_aux: + shows "freeright U \ freeright U" +apply(induct rule: freeright.induct) +apply(auto intro: msgrel.intros) +done + +theorem msgrel_imp_eqv_freeright: + "U \ V \ freeright U \ freeright V" +by (erule msgrel.induct, auto intro: msgrel.intros msgrel_imp_eqv_freeright_aux) + +subsubsection{*The Discriminator for Constructors*} + +text{*A function to distinguish nonces, mpairs and encryptions*} +fun + freediscrim :: "freemsg \ int" +where + "freediscrim (NONCE N) = 0" + | "freediscrim (MPAIR X Y) = 1" + | "freediscrim (CRYPT K X) = freediscrim X + 2" + | "freediscrim (DECRYPT K X) = freediscrim X - 2" + +text{*This theorem helps us prove @{term "Nonce N \ MPair X Y"}*} +theorem msgrel_imp_eq_freediscrim: + "U \ V \ freediscrim U = freediscrim V" +by (erule msgrel.induct, auto) + + +subsection{*The Initial Algebra: A Quotiented Message Type*} + +quotient msg = freemsg / msgrel + by (rule equiv_msgrel) + +text{*The abstract message constructors*} + +quotient_def + Nonce::"Nonce :: nat \ msg" +where + "NONCE" + +quotient_def + MPair::"MPair :: msg \ msg \ msg" +where + "MPAIR" + +quotient_def + Crypt::"Crypt :: nat \ msg \ msg" +where + "CRYPT" + +quotient_def + Decrypt::"Decrypt :: nat \ msg \ msg" +where + "DECRYPT" + +lemma [quot_respect]: + shows "(op = ===> op \ ===> op \) CRYPT CRYPT" +by (auto intro: CRYPT) + +lemma [quot_respect]: + shows "(op = ===> op \ ===> op \) DECRYPT DECRYPT" +by (auto intro: DECRYPT) + +text{*Establishing these two equations is the point of the whole exercise*} +theorem CD_eq [simp]: "Crypt K (Decrypt K X) = X" +by (lifting CD) + +theorem DC_eq [simp]: "Decrypt K (Crypt K X) = X" +by (lifting DC) + +subsection{*The Abstract Function to Return the Set of Nonces*} + +quotient_def + nonces :: "nounces:: msg \ nat set" +where + "freenonces" + +text{*Now prove the four equations for @{term nonces}*} + +lemma [quot_respect]: + shows "(op \ ===> op =) freenonces freenonces" +by (simp add: msgrel_imp_eq_freenonces) + +lemma [quot_respect]: + shows "(op = ===> op \) NONCE NONCE" +by (simp add: NONCE) + +lemma nonces_Nonce [simp]: + shows "nonces (Nonce N) = {N}" +by (lifting freenonces.simps(1)) + +lemma [quot_respect]: + shows " (op \ ===> op \ ===> op \) MPAIR MPAIR" +by (simp add: MPAIR) + +lemma nonces_MPair [simp]: + shows "nonces (MPair X Y) = nonces X \ nonces Y" +by (lifting freenonces.simps(2)) + +lemma nonces_Crypt [simp]: + shows "nonces (Crypt K X) = nonces X" +by (lifting freenonces.simps(3)) + +lemma nonces_Decrypt [simp]: "nonces (Decrypt K X) = nonces X" +by (lifting freenonces.simps(4)) + +subsection{*The Abstract Function to Return the Left Part*} + +quotient_def + left :: "left:: msg \ msg" +where + "freeleft" + +lemma [quot_respect]: + shows "(op \ ===> op \) freeleft freeleft" +by (simp add: msgrel_imp_eqv_freeleft) + +lemma left_Nonce [simp]: + shows "left (Nonce N) = Nonce N" +by (lifting freeleft.simps(1)) + +lemma left_MPair [simp]: + shows "left (MPair X Y) = X" +by (lifting freeleft.simps(2)) + +lemma left_Crypt [simp]: + shows "left (Crypt K X) = left X" +by (lifting freeleft.simps(3)) + +lemma left_Decrypt [simp]: + shows "left (Decrypt K X) = left X" +by (lifting freeleft.simps(4)) + +subsection{*The Abstract Function to Return the Right Part*} + +quotient_def + right :: "right:: msg \ msg" +where + "freeright" + +text{*Now prove the four equations for @{term right}*} + +lemma [quot_respect]: + shows "(op \ ===> op \) freeright freeright" +by (simp add: msgrel_imp_eqv_freeright) + +lemma right_Nonce [simp]: + shows "right (Nonce N) = Nonce N" +by (lifting freeright.simps(1)) + +lemma right_MPair [simp]: + shows "right (MPair X Y) = Y" +by (lifting freeright.simps(2)) + +lemma right_Crypt [simp]: + shows "right (Crypt K X) = right X" +by (lifting freeright.simps(3)) + +lemma right_Decrypt [simp]: + shows "right (Decrypt K X) = right X" +by (lifting freeright.simps(4)) + +subsection{*Injectivity Properties of Some Constructors*} + +lemma NONCE_imp_eq: + shows "NONCE m \ NONCE n \ m = n" +by (drule msgrel_imp_eq_freenonces, simp) + +text{*Can also be proved using the function @{term nonces}*} +lemma Nonce_Nonce_eq [iff]: + shows "(Nonce m = Nonce n) = (m = n)" +apply(rule iffI) +apply(lifting NONCE_imp_eq) +apply(simp) +done + +lemma MPAIR_imp_eqv_left: + shows "MPAIR X Y \ MPAIR X' Y' \ X \ X'" +by (drule msgrel_imp_eqv_freeleft, simp) + +lemma MPair_imp_eq_left: + assumes eq: "MPair X Y = MPair X' Y'" + shows "X = X'" +using eq by (lifting MPAIR_imp_eqv_left) + +lemma MPAIR_imp_eqv_right: + shows "MPAIR X Y \ MPAIR X' Y' \ Y \ Y'" +by (drule msgrel_imp_eqv_freeright, simp) + +lemma MPair_imp_eq_right: + shows "MPair X Y = MPair X' Y' \ Y = Y'" +by (lifting MPAIR_imp_eqv_right) + +theorem MPair_MPair_eq [iff]: + shows "(MPair X Y = MPair X' Y') = (X=X' & Y=Y')" +by (blast dest: MPair_imp_eq_left MPair_imp_eq_right) + +lemma NONCE_neqv_MPAIR: + shows "\(NONCE m \ MPAIR X Y)" +by (auto dest: msgrel_imp_eq_freediscrim) + +theorem Nonce_neq_MPair [iff]: + shows "Nonce N \ MPair X Y" +by (lifting NONCE_neqv_MPAIR) + +text{*Example suggested by a referee*} + +lemma CRYPT_NONCE_neq_NONCE: + shows "\(CRYPT K (NONCE M) \ NONCE N)" +by (auto dest: msgrel_imp_eq_freediscrim) + +theorem Crypt_Nonce_neq_Nonce: + shows "Crypt K (Nonce M) \ Nonce N" +by (lifting CRYPT_NONCE_neq_NONCE) + +text{*...and many similar results*} +lemma CRYPT2_NONCE_neq_NONCE: + shows "\(CRYPT K (CRYPT K' (NONCE M)) \ NONCE N)" +by (auto dest: msgrel_imp_eq_freediscrim) + +theorem Crypt2_Nonce_neq_Nonce: + shows "Crypt K (Crypt K' (Nonce M)) \ Nonce N" +by (lifting CRYPT2_NONCE_neq_NONCE) + +theorem Crypt_Crypt_eq [iff]: + shows "(Crypt K X = Crypt K X') = (X=X')" +proof + assume "Crypt K X = Crypt K X'" + hence "Decrypt K (Crypt K X) = Decrypt K (Crypt K X')" by simp + thus "X = X'" by simp +next + assume "X = X'" + thus "Crypt K X = Crypt K X'" by simp +qed + +theorem Decrypt_Decrypt_eq [iff]: + shows "(Decrypt K X = Decrypt K X') = (X=X')" +proof + assume "Decrypt K X = Decrypt K X'" + hence "Crypt K (Decrypt K X) = Crypt K (Decrypt K X')" by simp + thus "X = X'" by simp +next + assume "X = X'" + thus "Decrypt K X = Decrypt K X'" by simp +qed + +lemma msg_induct_aux: + shows "\\N. P (Nonce N); + \X Y. \P X; P Y\ \ P (MPair X Y); + \K X. P X \ P (Crypt K X); + \K X. P X \ P (Decrypt K X)\ \ P msg" +by (lifting freemsg.induct) + +lemma msg_induct [case_names Nonce MPair Crypt Decrypt, cases type: msg]: + assumes N: "\N. P (Nonce N)" + and M: "\X Y. \P X; P Y\ \ P (MPair X Y)" + and C: "\K X. P X \ P (Crypt K X)" + and D: "\K X. P X \ P (Decrypt K X)" + shows "P msg" +using N M C D by (blast intro: msg_induct_aux) + +subsection{*The Abstract Discriminator*} + +text{*However, as @{text Crypt_Nonce_neq_Nonce} above illustrates, we don't +need this function in order to prove discrimination theorems.*} + +quotient_def + discrim :: "discrim:: msg \ int" +where + "freediscrim" + +text{*Now prove the four equations for @{term discrim}*} + +lemma [quot_respect]: + shows "(op \ ===> op =) freediscrim freediscrim" +by (auto simp add: msgrel_imp_eq_freediscrim) + +lemma discrim_Nonce [simp]: + shows "discrim (Nonce N) = 0" +by (lifting freediscrim.simps(1)) + +lemma discrim_MPair [simp]: + shows "discrim (MPair X Y) = 1" +by (lifting freediscrim.simps(2)) + +lemma discrim_Crypt [simp]: + shows "discrim (Crypt K X) = discrim X + 2" +by (lifting freediscrim.simps(3)) + +lemma discrim_Decrypt [simp]: + shows "discrim (Decrypt K X) = discrim X - 2" +by (lifting freediscrim.simps(4)) + +end +