diff -r 76d4d66309bd -r 8c3cf9f4f5f2 Nominal/Term2.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Nominal/Term2.thy Thu Feb 25 14:14:08 2010 +0100 @@ -0,0 +1,78 @@ +theory Term2 +imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "Abs" "Perm" "Fv" "Rsp" "../Attic/Prove" +begin + +atom_decl name + +section {*** lets with single assignments ***} + +datatype rtrm2 = + rVr2 "name" +| rAp2 "rtrm2" "rtrm2" +| rLm2 "name" "rtrm2" --"bind (name) in (rtrm2)" +| rLt2 "rassign" "rtrm2" --"bind (bv2 rassign) in (rtrm2)" +and rassign = + rAs "name" "rtrm2" + +(* to be given by the user *) +primrec + rbv2 +where + "rbv2 (rAs x t) = {atom x}" + +setup {* snd o define_raw_perms ["rtrm2", "rassign"] ["Term2.rtrm2", "Term2.rassign"] *} + +local_setup {* snd o define_fv_alpha "Term2.rtrm2" + [[[[]], [[], []], [[(NONE, 0)], [(NONE, 0)]], [[], [(SOME @{term rbv2}, 0)]]], + [[[], []]]] *} + +notation + alpha_rtrm2 ("_ \2 _" [100, 100] 100) and + alpha_rassign ("_ \2b _" [100, 100] 100) +thm alpha_rtrm2_alpha_rassign.intros + +local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha2_inj}, []), (build_alpha_inj @{thms alpha_rtrm2_alpha_rassign.intros} @{thms rtrm2.distinct rtrm2.inject rassign.distinct rassign.inject} @{thms alpha_rtrm2.cases alpha_rassign.cases} ctxt)) ctxt)) *} +thm alpha2_inj + +lemma alpha2_eqvt: + "t \2 s \ (pi \ t) \2 (pi \ s)" + "a \2b b \ (pi \ a) \2b (pi \ b)" +sorry + +local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha2_equivp}, []), + (build_equivps [@{term alpha_rtrm2}, @{term alpha_rassign}] @{thm rtrm2_rassign.induct} @{thm alpha_rtrm2_alpha_rassign.induct} @{thms rtrm2.inject rassign.inject} @{thms alpha2_inj} @{thms rtrm2.distinct rassign.distinct} @{thms alpha_rtrm2.cases alpha_rassign.cases} @{thms alpha2_eqvt} ctxt)) ctxt)) *} +thm alpha2_equivp + +local_setup {* define_quotient_type + [(([], @{binding trm2}, NoSyn), (@{typ rtrm2}, @{term alpha_rtrm2})), + (([], @{binding assign}, NoSyn), (@{typ rassign}, @{term alpha_rassign}))] + ((rtac @{thm alpha2_equivp(1)} 1) THEN (rtac @{thm alpha2_equivp(2)}) 1) *} + +local_setup {* +(fn ctxt => ctxt + |> snd o (Quotient_Def.quotient_lift_const ("Vr2", @{term rVr2})) + |> snd o (Quotient_Def.quotient_lift_const ("Ap2", @{term rAp2})) + |> snd o (Quotient_Def.quotient_lift_const ("Lm2", @{term rLm2})) + |> snd o (Quotient_Def.quotient_lift_const ("Lt2", @{term rLt2})) + |> snd o (Quotient_Def.quotient_lift_const ("As", @{term rAs})) + |> snd o (Quotient_Def.quotient_lift_const ("fv_trm2", @{term fv_rtrm2})) + |> snd o (Quotient_Def.quotient_lift_const ("bv2", @{term rbv2}))) +*} +print_theorems + +local_setup {* prove_const_rsp @{binding fv_rtrm2_rsp} [@{term fv_rtrm2}, @{term fv_rassign}] + (fn _ => fvbv_rsp_tac @{thm alpha_rtrm2_alpha_rassign.induct} @{thms fv_rtrm2_fv_rassign.simps} 1) *} +local_setup {* prove_const_rsp @{binding rbv2_rsp} [@{term rbv2}] + (fn _ => fvbv_rsp_tac @{thm alpha_rtrm2_alpha_rassign.inducts(2)} @{thms rbv2.simps} 1) *} +local_setup {* prove_const_rsp @{binding rVr2_rsp} [@{term rVr2}] + (fn _ => constr_rsp_tac @{thms alpha2_inj} @{thms fv_rtrm2_rsp} @{thms alpha2_equivp} 1) *} +local_setup {* prove_const_rsp @{binding rAp2_rsp} [@{term rAp2}] + (fn _ => constr_rsp_tac @{thms alpha2_inj} @{thms fv_rtrm2_rsp} @{thms alpha2_equivp} 1) *} +local_setup {* prove_const_rsp @{binding rLm2_rsp} [@{term rLm2}] + (fn _ => constr_rsp_tac @{thms alpha2_inj} @{thms fv_rtrm2_rsp} @{thms alpha2_equivp} 1) *} +local_setup {* prove_const_rsp @{binding rLt2_rsp} [@{term rLt2}] + (fn _ => constr_rsp_tac @{thms alpha2_inj} @{thms fv_rtrm2_rsp rbv2_rsp} @{thms alpha2_equivp} 1) *} +local_setup {* prove_const_rsp @{binding permute_rtrm2_rsp} [@{term "permute :: perm \ rtrm2 \ rtrm2"}] + (fn _ => asm_simp_tac (HOL_ss addsimps @{thms alpha2_eqvt}) 1) *} + +end