diff -r 6088fea1c8b1 -r 8a1c8dc72b5c Quot/QuotList.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Quot/QuotList.thy Mon Dec 07 14:09:50 2009 +0100 @@ -0,0 +1,174 @@ +theory QuotList +imports QuotScript List +begin + +fun + list_rel +where + "list_rel R [] [] = True" +| "list_rel R (x#xs) [] = False" +| "list_rel R [] (x#xs) = False" +| "list_rel R (x#xs) (y#ys) = (R x y \ list_rel R xs ys)" + +lemma list_equivp: + assumes a: "equivp R" + shows "equivp (list_rel R)" + unfolding equivp_def + apply(rule allI)+ + apply(induct_tac x y rule: list_induct2') + apply(simp_all add: expand_fun_eq) + apply(metis list_rel.simps(1) list_rel.simps(2)) + apply(metis list_rel.simps(1) list_rel.simps(2)) + apply(rule iffI) + apply(rule allI) + apply(case_tac x) + apply(simp_all) + using a + apply(unfold equivp_def) + apply(auto)[1] + apply(metis list_rel.simps(4)) + done + +lemma list_rel_rel: + assumes q: "Quotient R Abs Rep" + shows "list_rel R r s = (list_rel R r r \ list_rel R s s \ (map Abs r = map Abs s))" + apply(induct r s rule: list_induct2') + apply(simp_all) + using Quotient_rel[OF q] + apply(metis) + done + +lemma list_quotient: + assumes q: "Quotient R Abs Rep" + shows "Quotient (list_rel R) (map Abs) (map Rep)" + unfolding Quotient_def + apply(rule conjI) + apply(rule allI) + apply(induct_tac a) + apply(simp) + apply(simp add: Quotient_abs_rep[OF q]) + apply(rule conjI) + apply(rule allI) + apply(induct_tac a) + apply(simp) + apply(simp) + apply(simp add: Quotient_rep_reflp[OF q]) + apply(rule allI)+ + apply(rule list_rel_rel[OF q]) + done + + +lemma cons_prs: + assumes q: "Quotient R Abs Rep" + shows "(map Abs) ((Rep h) # (map Rep t)) = h # t" +by (induct t) (simp_all add: Quotient_abs_rep[OF q]) + +lemma cons_rsp: + assumes q: "Quotient R Abs Rep" + shows "(R ===> list_rel R ===> list_rel R) op # op #" +by (auto) + +lemma nil_prs: + assumes q: "Quotient R Abs Rep" + shows "map Abs [] \ []" +by (simp) + +lemma nil_rsp: + assumes q: "Quotient R Abs Rep" + shows "list_rel R [] []" +by simp + +lemma map_prs: + assumes a: "Quotient R1 abs1 rep1" + and b: "Quotient R2 abs2 rep2" + shows "(map abs2) (map ((abs1 ---> rep2) f) (map rep1 l)) = map f l" +by (induct l) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) + +lemma map_rsp: + assumes q1: "Quotient R1 Abs1 Rep1" + and q2: "Quotient R2 Abs2 Rep2" + shows "((R1 ===> R2) ===> (list_rel R1) ===> list_rel R2) map map" +apply(simp) +apply(rule allI)+ +apply(rule impI) +apply(rule allI)+ +apply (induct_tac xa ya rule: list_induct2') +apply simp_all +done + +(* TODO: if the above is correct, we can remove this one *) +lemma map_rsp_lo: + assumes q1: "Quotient R1 Abs1 Rep1" + and q2: "Quotient R2 Abs2 Rep2" + and a: "(R1 ===> R2) f1 f2" + and b: "list_rel R1 l1 l2" + shows "list_rel R2 (map f1 l1) (map f2 l2)" +using b a +by (induct l1 l2 rule: list_induct2') (simp_all) + +lemma foldr_prs: + assumes a: "Quotient R1 abs1 rep1" + and b: "Quotient R2 abs2 rep2" + shows "abs2 (foldr ((abs1 ---> abs2 ---> rep2) f) (map rep1 l) (rep2 e)) = foldr f l e" +by (induct l) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) + +lemma foldl_prs: + assumes a: "Quotient R1 abs1 rep1" + and b: "Quotient R2 abs2 rep2" + shows "abs1 (foldl ((abs1 ---> abs2 ---> rep1) f) (rep1 e) (map rep2 l)) = foldl f e l" +by (induct l arbitrary:e) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) + +lemma list_rel_empty: "list_rel R [] b \ length b = 0" +by (induct b) (simp_all) + +lemma list_rel_len: "list_rel R a b \ length a = length b" +apply (induct a arbitrary: b) +apply (simp add: list_rel_empty) +apply (case_tac b) +apply simp_all +done + +(* TODO: induct_tac doesn't accept 'arbitrary'. + induct doesn't accept 'rule'. + that's why the proof uses manual generalisation and needs assumptions + both in conclusion for induction and in assumptions. *) +lemma foldl_rsp: + assumes q1: "Quotient R1 Abs1 Rep1" + and q2: "Quotient R2 Abs2 Rep2" + shows "((R1 ===> R2 ===> R1) ===> R1 ===> list_rel R2 ===> R1) foldl foldl" +apply auto +apply (subgoal_tac "R1 xa ya \ list_rel R2 xb yb \ R1 (foldl x xa xb) (foldl y ya yb)") +apply simp +apply (rule_tac x="xa" in spec) +apply (rule_tac x="ya" in spec) +apply (rule_tac xs="xb" and ys="yb" in list_induct2) +apply (rule list_rel_len) +apply (simp_all) +done + +(* TODO: foldr_rsp should be similar *) + + + + +(* TODO: Rest are unused *) + +lemma list_map_id: + shows "map (\x. x) = (\x. x)" + by simp + +lemma list_rel_eq: + shows "list_rel (op =) \ (op =)" +apply(rule eq_reflection) +unfolding expand_fun_eq +apply(rule allI)+ +apply(induct_tac x xa rule: list_induct2') +apply(simp_all) +done + +lemma list_rel_refl: + assumes a: "\x y. R x y = (R x = R y)" + shows "list_rel R x x" +by (induct x) (auto simp add: a) + +end