diff -r b6873d123f9b -r 89715c48f728 Nominal/Ex/QuotientSet.thy --- a/Nominal/Ex/QuotientSet.thy Sat May 12 21:39:09 2012 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,91 +0,0 @@ -theory QuotientSet -imports - "../Nominal2" -begin - -lemma supp_quot: - "(supp (R, x)) supports (R `` {x})" -unfolding supports_def -unfolding fresh_def[symmetric] -apply(perm_simp) -apply(simp add: swap_fresh_fresh) -done - -lemma - assumes "equiv UNIV R" - and "(x, y) \ R" - shows "R `` {x} = R `` {y}" -using assms -by (rule equiv_class_eq) - -lemma s1: - assumes "equiv UNIV R" - and "(x, y) \ R" - shows "a \ (R `` {x}) \ a \ (R `` {y})" -using assms -apply(subst equiv_class_eq) -apply(auto) -done - -lemma s2: - fixes x::"'a::fs" - assumes "equiv UNIV R" - and "supp R = {}" - shows "\{supp y | y. (x, y) \ R} supports (R `` {x})" -unfolding supports_def -apply(rule allI)+ -apply(rule impI) -apply(rule swap_fresh_fresh) -apply(drule conjunct1) -apply(auto)[1] -apply(subst s1) -apply(rule assms) -apply(assumption) -apply(rule supports_fresh) -apply(rule supp_quot) -apply(simp add: supp_Pair finite_supp assms) -apply(simp add: supp_Pair assms) -apply(drule conjunct2) -apply(auto)[1] -apply(subst s1) -apply(rule assms) -apply(assumption) -apply(rule supports_fresh) -apply(rule supp_quot) -apply(simp add: supp_Pair finite_supp assms) -apply(simp add: supp_Pair assms) -done - -lemma s3: - fixes S::"'a::fs set" - assumes "finite S" - and "S \ {}" - and "a \ S" - shows "\x \ S. a \ x" -using assms -apply(auto simp add: fresh_def) -apply(subst (asm) supp_of_finite_sets) -apply(auto) -done - -(* -lemma supp_inter: - fixes x::"'a::fs" - assumes "equiv UNIV R" - and "supp R = {}" - shows "supp (R `` {x}) = \{supp y | y. (x, y) \ R}" -apply(rule finite_supp_unique) -apply(rule s2) -apply(rule assms) -apply(rule assms) -apply(metis (lam_lifting, no_types) at_base_infinite finite_UNIV) -*) - - - - - -end - - -