diff -r 41137dc935ff -r 8193bbaa07fe Nominal/Nominal2_Base.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Nominal/Nominal2_Base.thy Sun Nov 14 16:34:47 2010 +0000 @@ -0,0 +1,2024 @@ +(* Title: Nominal2_Base + Authors: Brian Huffman, Christian Urban + + Basic definitions and lemma infrastructure for + Nominal Isabelle. +*) +theory Nominal2_Base +imports Main Infinite_Set + "~~/src/HOL/Quotient_Examples/FSet" +uses ("nominal_library.ML") + ("nominal_atoms.ML") +begin + +section {* Atoms and Sorts *} + +text {* A simple implementation for atom_sorts is strings. *} +(* types atom_sort = string *) + +text {* To deal with Church-like binding we use trees of + strings as sorts. *} + +datatype atom_sort = Sort "string" "atom_sort list" + +datatype atom = Atom atom_sort nat + + +text {* Basic projection function. *} + +primrec + sort_of :: "atom \ atom_sort" +where + "sort_of (Atom s i) = s" + +primrec + nat_of :: "atom \ nat" +where + "nat_of (Atom s n) = n" + + +text {* There are infinitely many atoms of each sort. *} +lemma INFM_sort_of_eq: + shows "INFM a. sort_of a = s" +proof - + have "INFM i. sort_of (Atom s i) = s" by simp + moreover have "inj (Atom s)" by (simp add: inj_on_def) + ultimately show "INFM a. sort_of a = s" by (rule INFM_inj) +qed + +lemma infinite_sort_of_eq: + shows "infinite {a. sort_of a = s}" + using INFM_sort_of_eq unfolding INFM_iff_infinite . + +lemma atom_infinite [simp]: + shows "infinite (UNIV :: atom set)" + using subset_UNIV infinite_sort_of_eq + by (rule infinite_super) + +lemma obtain_atom: + fixes X :: "atom set" + assumes X: "finite X" + obtains a where "a \ X" "sort_of a = s" +proof - + from X have "MOST a. a \ X" + unfolding MOST_iff_cofinite by simp + with INFM_sort_of_eq + have "INFM a. sort_of a = s \ a \ X" + by (rule INFM_conjI) + then obtain a where "a \ X" "sort_of a = s" + by (auto elim: INFM_E) + then show ?thesis .. +qed + +lemma atom_components_eq_iff: + fixes a b :: atom + shows "a = b \ sort_of a = sort_of b \ nat_of a = nat_of b" + by (induct a, induct b, simp) + +section {* Sort-Respecting Permutations *} + +typedef perm = + "{f. bij f \ finite {a. f a \ a} \ (\a. sort_of (f a) = sort_of a)}" +proof + show "id \ ?perm" by simp +qed + +lemma permI: + assumes "bij f" and "MOST x. f x = x" and "\a. sort_of (f a) = sort_of a" + shows "f \ perm" + using assms unfolding perm_def MOST_iff_cofinite by simp + +lemma perm_is_bij: "f \ perm \ bij f" + unfolding perm_def by simp + +lemma perm_is_finite: "f \ perm \ finite {a. f a \ a}" + unfolding perm_def by simp + +lemma perm_is_sort_respecting: "f \ perm \ sort_of (f a) = sort_of a" + unfolding perm_def by simp + +lemma perm_MOST: "f \ perm \ MOST x. f x = x" + unfolding perm_def MOST_iff_cofinite by simp + +lemma perm_id: "id \ perm" + unfolding perm_def by simp + +lemma perm_comp: + assumes f: "f \ perm" and g: "g \ perm" + shows "(f \ g) \ perm" +apply (rule permI) +apply (rule bij_comp) +apply (rule perm_is_bij [OF g]) +apply (rule perm_is_bij [OF f]) +apply (rule MOST_rev_mp [OF perm_MOST [OF g]]) +apply (rule MOST_rev_mp [OF perm_MOST [OF f]]) +apply (simp) +apply (simp add: perm_is_sort_respecting [OF f]) +apply (simp add: perm_is_sort_respecting [OF g]) +done + +lemma perm_inv: + assumes f: "f \ perm" + shows "(inv f) \ perm" +apply (rule permI) +apply (rule bij_imp_bij_inv) +apply (rule perm_is_bij [OF f]) +apply (rule MOST_mono [OF perm_MOST [OF f]]) +apply (erule subst, rule inv_f_f) +apply (rule bij_is_inj [OF perm_is_bij [OF f]]) +apply (rule perm_is_sort_respecting [OF f, THEN sym, THEN trans]) +apply (simp add: surj_f_inv_f [OF bij_is_surj [OF perm_is_bij [OF f]]]) +done + +lemma bij_Rep_perm: "bij (Rep_perm p)" + using Rep_perm [of p] unfolding perm_def by simp + +lemma finite_Rep_perm: "finite {a. Rep_perm p a \ a}" + using Rep_perm [of p] unfolding perm_def by simp + +lemma sort_of_Rep_perm: "sort_of (Rep_perm p a) = sort_of a" + using Rep_perm [of p] unfolding perm_def by simp + +lemma Rep_perm_ext: + "Rep_perm p1 = Rep_perm p2 \ p1 = p2" + by (simp add: fun_eq_iff Rep_perm_inject [symmetric]) + +instance perm :: size .. + +subsection {* Permutations form a group *} + +instantiation perm :: group_add +begin + +definition + "0 = Abs_perm id" + +definition + "- p = Abs_perm (inv (Rep_perm p))" + +definition + "p + q = Abs_perm (Rep_perm p \ Rep_perm q)" + +definition + "(p1::perm) - p2 = p1 + - p2" + +lemma Rep_perm_0: "Rep_perm 0 = id" + unfolding zero_perm_def + by (simp add: Abs_perm_inverse perm_id) + +lemma Rep_perm_add: + "Rep_perm (p1 + p2) = Rep_perm p1 \ Rep_perm p2" + unfolding plus_perm_def + by (simp add: Abs_perm_inverse perm_comp Rep_perm) + +lemma Rep_perm_uminus: + "Rep_perm (- p) = inv (Rep_perm p)" + unfolding uminus_perm_def + by (simp add: Abs_perm_inverse perm_inv Rep_perm) + +instance +apply default +unfolding Rep_perm_inject [symmetric] +unfolding minus_perm_def +unfolding Rep_perm_add +unfolding Rep_perm_uminus +unfolding Rep_perm_0 +by (simp_all add: o_assoc inv_o_cancel [OF bij_is_inj [OF bij_Rep_perm]]) + +end + + +section {* Implementation of swappings *} + +definition + swap :: "atom \ atom \ perm" ("'(_ \ _')") +where + "(a \ b) = + Abs_perm (if sort_of a = sort_of b + then (\c. if a = c then b else if b = c then a else c) + else id)" + +lemma Rep_perm_swap: + "Rep_perm (a \ b) = + (if sort_of a = sort_of b + then (\c. if a = c then b else if b = c then a else c) + else id)" +unfolding swap_def +apply (rule Abs_perm_inverse) +apply (rule permI) +apply (auto simp add: bij_def inj_on_def surj_def)[1] +apply (rule MOST_rev_mp [OF MOST_neq(1) [of a]]) +apply (rule MOST_rev_mp [OF MOST_neq(1) [of b]]) +apply (simp) +apply (simp) +done + +lemmas Rep_perm_simps = + Rep_perm_0 + Rep_perm_add + Rep_perm_uminus + Rep_perm_swap + +lemma swap_different_sorts [simp]: + "sort_of a \ sort_of b \ (a \ b) = 0" + by (rule Rep_perm_ext) (simp add: Rep_perm_simps) + +lemma swap_cancel: + "(a \ b) + (a \ b) = 0" + by (rule Rep_perm_ext) + (simp add: Rep_perm_simps fun_eq_iff) + +lemma swap_self [simp]: + "(a \ a) = 0" + by (rule Rep_perm_ext, simp add: Rep_perm_simps fun_eq_iff) + +lemma minus_swap [simp]: + "- (a \ b) = (a \ b)" + by (rule minus_unique [OF swap_cancel]) + +lemma swap_commute: + "(a \ b) = (b \ a)" + by (rule Rep_perm_ext) + (simp add: Rep_perm_swap fun_eq_iff) + +lemma swap_triple: + assumes "a \ b" and "c \ b" + assumes "sort_of a = sort_of b" "sort_of b = sort_of c" + shows "(a \ c) + (b \ c) + (a \ c) = (a \ b)" + using assms + by (rule_tac Rep_perm_ext) + (auto simp add: Rep_perm_simps fun_eq_iff) + + +section {* Permutation Types *} + +text {* + Infix syntax for @{text permute} has higher precedence than + addition, but lower than unary minus. +*} + +class pt = + fixes permute :: "perm \ 'a \ 'a" ("_ \ _" [76, 75] 75) + assumes permute_zero [simp]: "0 \ x = x" + assumes permute_plus [simp]: "(p + q) \ x = p \ (q \ x)" +begin + +lemma permute_diff [simp]: + shows "(p - q) \ x = p \ - q \ x" + unfolding diff_minus by simp + +lemma permute_minus_cancel [simp]: + shows "p \ - p \ x = x" + and "- p \ p \ x = x" + unfolding permute_plus [symmetric] by simp_all + +lemma permute_swap_cancel [simp]: + shows "(a \ b) \ (a \ b) \ x = x" + unfolding permute_plus [symmetric] + by (simp add: swap_cancel) + +lemma permute_swap_cancel2 [simp]: + shows "(a \ b) \ (b \ a) \ x = x" + unfolding permute_plus [symmetric] + by (simp add: swap_commute) + +lemma inj_permute [simp]: + shows "inj (permute p)" + by (rule inj_on_inverseI) + (rule permute_minus_cancel) + +lemma surj_permute [simp]: + shows "surj (permute p)" + by (rule surjI, rule permute_minus_cancel) + +lemma bij_permute [simp]: + shows "bij (permute p)" + by (rule bijI [OF inj_permute surj_permute]) + +lemma inv_permute: + shows "inv (permute p) = permute (- p)" + by (rule inv_equality) (simp_all) + +lemma permute_minus: + shows "permute (- p) = inv (permute p)" + by (simp add: inv_permute) + +lemma permute_eq_iff [simp]: + shows "p \ x = p \ y \ x = y" + by (rule inj_permute [THEN inj_eq]) + +end + +subsection {* Permutations for atoms *} + +instantiation atom :: pt +begin + +definition + "p \ a = (Rep_perm p) a" + +instance +apply(default) +apply(simp_all add: permute_atom_def Rep_perm_simps) +done + +end + +lemma sort_of_permute [simp]: + shows "sort_of (p \ a) = sort_of a" + unfolding permute_atom_def by (rule sort_of_Rep_perm) + +lemma swap_atom: + shows "(a \ b) \ c = + (if sort_of a = sort_of b + then (if c = a then b else if c = b then a else c) else c)" + unfolding permute_atom_def + by (simp add: Rep_perm_swap) + +lemma swap_atom_simps [simp]: + "sort_of a = sort_of b \ (a \ b) \ a = b" + "sort_of a = sort_of b \ (a \ b) \ b = a" + "c \ a \ c \ b \ (a \ b) \ c = c" + unfolding swap_atom by simp_all + +lemma expand_perm_eq: + fixes p q :: "perm" + shows "p = q \ (\a::atom. p \ a = q \ a)" + unfolding permute_atom_def + by (metis Rep_perm_ext ext) + + +subsection {* Permutations for permutations *} + +instantiation perm :: pt +begin + +definition + "p \ q = p + q - p" + +instance +apply default +apply (simp add: permute_perm_def) +apply (simp add: permute_perm_def diff_minus minus_add add_assoc) +done + +end + +lemma permute_self: + shows "p \ p = p" + unfolding permute_perm_def + by (simp add: diff_minus add_assoc) + +lemma permute_eqvt: + shows "p \ (q \ x) = (p \ q) \ (p \ x)" + unfolding permute_perm_def by simp + +lemma zero_perm_eqvt: + shows "p \ (0::perm) = 0" + unfolding permute_perm_def by simp + +lemma add_perm_eqvt: + fixes p p1 p2 :: perm + shows "p \ (p1 + p2) = p \ p1 + p \ p2" + unfolding permute_perm_def + by (simp add: expand_perm_eq) + +lemma swap_eqvt: + shows "p \ (a \ b) = (p \ a \ p \ b)" + unfolding permute_perm_def + by (auto simp add: swap_atom expand_perm_eq) + +lemma uminus_eqvt: + fixes p q::"perm" + shows "p \ (- q) = - (p \ q)" + unfolding permute_perm_def + by (simp add: diff_minus minus_add add_assoc) + +subsection {* Permutations for functions *} + +instantiation "fun" :: (pt, pt) pt +begin + +definition + "p \ f = (\x. p \ (f (- p \ x)))" + +instance +apply default +apply (simp add: permute_fun_def) +apply (simp add: permute_fun_def minus_add) +done + +end + +lemma permute_fun_app_eq: + shows "p \ (f x) = (p \ f) (p \ x)" + unfolding permute_fun_def by simp + + +subsection {* Permutations for booleans *} + +instantiation bool :: pt +begin + +definition "p \ (b::bool) = b" + +instance +apply(default) +apply(simp_all add: permute_bool_def) +done + +end + +lemma Not_eqvt: + shows "p \ (\ A) = (\ (p \ A))" +by (simp add: permute_bool_def) + +lemma conj_eqvt: + shows "p \ (A \ B) = ((p \ A) \ (p \ B))" + by (simp add: permute_bool_def) + +lemma imp_eqvt: + shows "p \ (A \ B) = ((p \ A) \ (p \ B))" + by (simp add: permute_bool_def) + +lemma ex_eqvt: + shows "p \ (\x. P x) = (\x. (p \ P) x)" + unfolding permute_fun_def permute_bool_def + by (auto, rule_tac x="p \ x" in exI, simp) + +lemma all_eqvt: + shows "p \ (\x. P x) = (\x. (p \ P) x)" + unfolding permute_fun_def permute_bool_def + by (auto, drule_tac x="p \ x" in spec, simp) + +lemma permute_boolE: + fixes P::"bool" + shows "p \ P \ P" + by (simp add: permute_bool_def) + +lemma permute_boolI: + fixes P::"bool" + shows "P \ p \ P" + by(simp add: permute_bool_def) + +subsection {* Permutations for sets *} + +lemma permute_set_eq: + fixes x::"'a::pt" + and p::"perm" + shows "(p \ X) = {p \ x | x. x \ X}" + unfolding permute_fun_def + unfolding permute_bool_def + apply(auto simp add: mem_def) + apply(rule_tac x="- p \ x" in exI) + apply(simp) + done + +lemma permute_set_eq_image: + shows "p \ X = permute p ` X" + unfolding permute_set_eq by auto + +lemma permute_set_eq_vimage: + shows "p \ X = permute (- p) -` X" + unfolding permute_fun_def permute_bool_def + unfolding vimage_def Collect_def mem_def .. + +lemma swap_set_not_in: + assumes a: "a \ S" "b \ S" + shows "(a \ b) \ S = S" + unfolding permute_set_eq + using a by (auto simp add: swap_atom) + +lemma swap_set_in: + assumes a: "a \ S" "b \ S" "sort_of a = sort_of b" + shows "(a \ b) \ S \ S" + unfolding permute_set_eq + using a by (auto simp add: swap_atom) + +lemma mem_permute_iff: + shows "(p \ x) \ (p \ X) \ x \ X" + unfolding mem_def permute_fun_def permute_bool_def + by simp + +lemma mem_eqvt: + shows "p \ (x \ A) \ (p \ x) \ (p \ A)" + unfolding mem_def + by (simp add: permute_fun_app_eq) + +lemma empty_eqvt: + shows "p \ {} = {}" + unfolding empty_def Collect_def + by (simp add: permute_fun_def permute_bool_def) + +lemma insert_eqvt: + shows "p \ (insert x A) = insert (p \ x) (p \ A)" + unfolding permute_set_eq_image image_insert .. + + +subsection {* Permutations for units *} + +instantiation unit :: pt +begin + +definition "p \ (u::unit) = u" + +instance +by (default) (simp_all add: permute_unit_def) + +end + + +subsection {* Permutations for products *} + +instantiation prod :: (pt, pt) pt +begin + +primrec + permute_prod +where + Pair_eqvt: "p \ (x, y) = (p \ x, p \ y)" + +instance +by default auto + +end + +subsection {* Permutations for sums *} + +instantiation sum :: (pt, pt) pt +begin + +primrec + permute_sum +where + "p \ (Inl x) = Inl (p \ x)" +| "p \ (Inr y) = Inr (p \ y)" + +instance +by (default) (case_tac [!] x, simp_all) + +end + +subsection {* Permutations for lists *} + +instantiation list :: (pt) pt +begin + +primrec + permute_list +where + "p \ [] = []" +| "p \ (x # xs) = p \ x # p \ xs" + +instance +by (default) (induct_tac [!] x, simp_all) + +end + +lemma set_eqvt: + shows "p \ (set xs) = set (p \ xs)" + by (induct xs) (simp_all add: empty_eqvt insert_eqvt) + +subsection {* Permutations for options *} + +instantiation option :: (pt) pt +begin + +primrec + permute_option +where + "p \ None = None" +| "p \ (Some x) = Some (p \ x)" + +instance +by (default) (induct_tac [!] x, simp_all) + +end + + +subsection {* Permutations for fsets *} + +lemma permute_fset_rsp[quot_respect]: + shows "(op = ===> list_eq ===> list_eq) permute permute" + unfolding fun_rel_def + by (simp add: set_eqvt[symmetric]) + +instantiation fset :: (pt) pt +begin + +quotient_definition + "permute_fset :: perm \ 'a fset \ 'a fset" +is + "permute :: perm \ 'a list \ 'a list" + +instance +proof + fix x :: "'a fset" and p q :: "perm" + show "0 \ x = x" by (descending) (simp) + show "(p + q) \ x = p \ q \ x" by (descending) (simp) +qed + +end + +lemma permute_fset [simp]: + fixes S::"('a::pt) fset" + shows "(p \ {||}) = ({||} ::('a::pt) fset)" + and "(p \ insert_fset x S) = insert_fset (p \ x) (p \ S)" + by (lifting permute_list.simps) + + + +subsection {* Permutations for @{typ char}, @{typ nat}, and @{typ int} *} + +instantiation char :: pt +begin + +definition "p \ (c::char) = c" + +instance +by (default) (simp_all add: permute_char_def) + +end + +instantiation nat :: pt +begin + +definition "p \ (n::nat) = n" + +instance +by (default) (simp_all add: permute_nat_def) + +end + +instantiation int :: pt +begin + +definition "p \ (i::int) = i" + +instance +by (default) (simp_all add: permute_int_def) + +end + + +section {* Pure types *} + +text {* Pure types will have always empty support. *} + +class pure = pt + + assumes permute_pure: "p \ x = x" + +text {* Types @{typ unit} and @{typ bool} are pure. *} + +instance unit :: pure +proof qed (rule permute_unit_def) + +instance bool :: pure +proof qed (rule permute_bool_def) + +text {* Other type constructors preserve purity. *} + +instance "fun" :: (pure, pure) pure +by default (simp add: permute_fun_def permute_pure) + +instance prod :: (pure, pure) pure +by default (induct_tac x, simp add: permute_pure) + +instance sum :: (pure, pure) pure +by default (induct_tac x, simp_all add: permute_pure) + +instance list :: (pure) pure +by default (induct_tac x, simp_all add: permute_pure) + +instance option :: (pure) pure +by default (induct_tac x, simp_all add: permute_pure) + + +subsection {* Types @{typ char}, @{typ nat}, and @{typ int} *} + +instance char :: pure +proof qed (rule permute_char_def) + +instance nat :: pure +proof qed (rule permute_nat_def) + +instance int :: pure +proof qed (rule permute_int_def) + + +subsection {* Supp, Freshness and Supports *} + +context pt +begin + +definition + supp :: "'a \ atom set" +where + "supp x = {a. infinite {b. (a \ b) \ x \ x}}" + +end + +definition + fresh :: "atom \ 'a::pt \ bool" ("_ \ _" [55, 55] 55) +where + "a \ x \ a \ supp x" + +lemma supp_conv_fresh: + shows "supp x = {a. \ a \ x}" + unfolding fresh_def by simp + +lemma swap_rel_trans: + assumes "sort_of a = sort_of b" + assumes "sort_of b = sort_of c" + assumes "(a \ c) \ x = x" + assumes "(b \ c) \ x = x" + shows "(a \ b) \ x = x" +proof (cases) + assume "a = b \ c = b" + with assms show "(a \ b) \ x = x" by auto +next + assume *: "\ (a = b \ c = b)" + have "((a \ c) + (b \ c) + (a \ c)) \ x = x" + using assms by simp + also have "(a \ c) + (b \ c) + (a \ c) = (a \ b)" + using assms * by (simp add: swap_triple) + finally show "(a \ b) \ x = x" . +qed + +lemma swap_fresh_fresh: + assumes a: "a \ x" + and b: "b \ x" + shows "(a \ b) \ x = x" +proof (cases) + assume asm: "sort_of a = sort_of b" + have "finite {c. (a \ c) \ x \ x}" "finite {c. (b \ c) \ x \ x}" + using a b unfolding fresh_def supp_def by simp_all + then have "finite ({c. (a \ c) \ x \ x} \ {c. (b \ c) \ x \ x})" by simp + then obtain c + where "(a \ c) \ x = x" "(b \ c) \ x = x" "sort_of c = sort_of b" + by (rule obtain_atom) (auto) + then show "(a \ b) \ x = x" using asm by (rule_tac swap_rel_trans) (simp_all) +next + assume "sort_of a \ sort_of b" + then show "(a \ b) \ x = x" by simp +qed + + +subsection {* supp and fresh are equivariant *} + +lemma finite_Collect_bij: + assumes a: "bij f" + shows "finite {x. P (f x)} = finite {x. P x}" +by (metis a finite_vimage_iff vimage_Collect_eq) + +lemma fresh_permute_iff: + shows "(p \ a) \ (p \ x) \ a \ x" +proof - + have "(p \ a) \ (p \ x) \ finite {b. (p \ a \ b) \ p \ x \ p \ x}" + unfolding fresh_def supp_def by simp + also have "\ \ finite {b. (p \ a \ p \ b) \ p \ x \ p \ x}" + using bij_permute by (rule finite_Collect_bij[symmetric]) + also have "\ \ finite {b. p \ (a \ b) \ x \ p \ x}" + by (simp only: permute_eqvt [of p] swap_eqvt) + also have "\ \ finite {b. (a \ b) \ x \ x}" + by (simp only: permute_eq_iff) + also have "\ \ a \ x" + unfolding fresh_def supp_def by simp + finally show "(p \ a) \ (p \ x) \ a \ x" . +qed + +lemma fresh_eqvt: + shows "p \ (a \ x) = (p \ a) \ (p \ x)" + unfolding permute_bool_def + by (simp add: fresh_permute_iff) + +lemma supp_eqvt: + fixes p :: "perm" + and x :: "'a::pt" + shows "p \ (supp x) = supp (p \ x)" + unfolding supp_conv_fresh + unfolding Collect_def + unfolding permute_fun_def + by (simp add: Not_eqvt fresh_eqvt) + +subsection {* supports *} + +definition + supports :: "atom set \ 'a::pt \ bool" (infixl "supports" 80) +where + "S supports x \ \a b. (a \ S \ b \ S \ (a \ b) \ x = x)" + +lemma supp_is_subset: + fixes S :: "atom set" + and x :: "'a::pt" + assumes a1: "S supports x" + and a2: "finite S" + shows "(supp x) \ S" +proof (rule ccontr) + assume "\ (supp x \ S)" + then obtain a where b1: "a \ supp x" and b2: "a \ S" by auto + from a1 b2 have "\b. b \ S \ (a \ b) \ x = x" unfolding supports_def by auto + then have "{b. (a \ b) \ x \ x} \ S" by auto + with a2 have "finite {b. (a \ b)\x \ x}" by (simp add: finite_subset) + then have "a \ (supp x)" unfolding supp_def by simp + with b1 show False by simp +qed + +lemma supports_finite: + fixes S :: "atom set" + and x :: "'a::pt" + assumes a1: "S supports x" + and a2: "finite S" + shows "finite (supp x)" +proof - + have "(supp x) \ S" using a1 a2 by (rule supp_is_subset) + then show "finite (supp x)" using a2 by (simp add: finite_subset) +qed + +lemma supp_supports: + fixes x :: "'a::pt" + shows "(supp x) supports x" +unfolding supports_def +proof (intro strip) + fix a b + assume "a \ (supp x) \ b \ (supp x)" + then have "a \ x" and "b \ x" by (simp_all add: fresh_def) + then show "(a \ b) \ x = x" by (simp add: swap_fresh_fresh) +qed + +lemma supp_is_least_supports: + fixes S :: "atom set" + and x :: "'a::pt" + assumes a1: "S supports x" + and a2: "finite S" + and a3: "\S'. finite S' \ (S' supports x) \ S \ S'" + shows "(supp x) = S" +proof (rule equalityI) + show "(supp x) \ S" using a1 a2 by (rule supp_is_subset) + with a2 have fin: "finite (supp x)" by (rule rev_finite_subset) + have "(supp x) supports x" by (rule supp_supports) + with fin a3 show "S \ supp x" by blast +qed + +lemma subsetCI: + shows "(\x. x \ A \ x \ B \ False) \ A \ B" + by auto + +lemma finite_supp_unique: + assumes a1: "S supports x" + assumes a2: "finite S" + assumes a3: "\a b. \a \ S; b \ S; sort_of a = sort_of b\ \ (a \ b) \ x \ x" + shows "(supp x) = S" + using a1 a2 +proof (rule supp_is_least_supports) + fix S' + assume "finite S'" and "S' supports x" + show "S \ S'" + proof (rule subsetCI) + fix a + assume "a \ S" and "a \ S'" + have "finite (S \ S')" + using `finite S` `finite S'` by simp + then obtain b where "b \ S \ S'" and "sort_of b = sort_of a" + by (rule obtain_atom) + then have "b \ S" and "b \ S'" and "sort_of a = sort_of b" + by simp_all + then have "(a \ b) \ x = x" + using `a \ S'` `S' supports x` by (simp add: supports_def) + moreover have "(a \ b) \ x \ x" + using `a \ S` `b \ S` `sort_of a = sort_of b` + by (rule a3) + ultimately show "False" by simp + qed +qed + +section {* Support w.r.t. relations *} + +text {* + This definition is used for unquotient types, where + alpha-equivalence does not coincide with equality. +*} + +definition + "supp_rel R x = {a. infinite {b. \(R ((a \ b) \ x) x)}}" + + + +section {* Finitely-supported types *} + +class fs = pt + + assumes finite_supp: "finite (supp x)" + +lemma pure_supp: + shows "supp (x::'a::pure) = {}" + unfolding supp_def by (simp add: permute_pure) + +lemma pure_fresh: + fixes x::"'a::pure" + shows "a \ x" + unfolding fresh_def by (simp add: pure_supp) + +instance pure < fs +by default (simp add: pure_supp) + + +subsection {* Type @{typ atom} is finitely-supported. *} + +lemma supp_atom: + shows "supp a = {a}" +apply (rule finite_supp_unique) +apply (clarsimp simp add: supports_def) +apply simp +apply simp +done + +lemma fresh_atom: + shows "a \ b \ a \ b" + unfolding fresh_def supp_atom by simp + +instance atom :: fs +by default (simp add: supp_atom) + +section {* Support for finite sets of atoms *} + + +lemma supp_finite_atom_set: + fixes S::"atom set" + assumes "finite S" + shows "supp S = S" + apply(rule finite_supp_unique) + apply(simp add: supports_def) + apply(simp add: swap_set_not_in) + apply(rule assms) + apply(simp add: swap_set_in) +done + +section {* Type @{typ perm} is finitely-supported. *} + +lemma perm_swap_eq: + shows "(a \ b) \ p = p \ (p \ (a \ b)) = (a \ b)" +unfolding permute_perm_def +by (metis add_diff_cancel minus_perm_def) + +lemma supports_perm: + shows "{a. p \ a \ a} supports p" + unfolding supports_def + unfolding perm_swap_eq + by (simp add: swap_eqvt) + +lemma finite_perm_lemma: + shows "finite {a::atom. p \ a \ a}" + using finite_Rep_perm [of p] + unfolding permute_atom_def . + +lemma supp_perm: + shows "supp p = {a. p \ a \ a}" +apply (rule finite_supp_unique) +apply (rule supports_perm) +apply (rule finite_perm_lemma) +apply (simp add: perm_swap_eq swap_eqvt) +apply (auto simp add: expand_perm_eq swap_atom) +done + +lemma fresh_perm: + shows "a \ p \ p \ a = a" + unfolding fresh_def + by (simp add: supp_perm) + +lemma supp_swap: + shows "supp (a \ b) = (if a = b \ sort_of a \ sort_of b then {} else {a, b})" + by (auto simp add: supp_perm swap_atom) + +lemma fresh_zero_perm: + shows "a \ (0::perm)" + unfolding fresh_perm by simp + +lemma supp_zero_perm: + shows "supp (0::perm) = {}" + unfolding supp_perm by simp + +lemma fresh_plus_perm: + fixes p q::perm + assumes "a \ p" "a \ q" + shows "a \ (p + q)" + using assms + unfolding fresh_def + by (auto simp add: supp_perm) + +lemma supp_plus_perm: + fixes p q::perm + shows "supp (p + q) \ supp p \ supp q" + by (auto simp add: supp_perm) + +lemma fresh_minus_perm: + fixes p::perm + shows "a \ (- p) \ a \ p" + unfolding fresh_def + unfolding supp_perm + apply(simp) + apply(metis permute_minus_cancel) + done + +lemma supp_minus_perm: + fixes p::perm + shows "supp (- p) = supp p" + unfolding supp_conv_fresh + by (simp add: fresh_minus_perm) + +instance perm :: fs +by default (simp add: supp_perm finite_perm_lemma) + +lemma plus_perm_eq: + fixes p q::"perm" + assumes asm: "supp p \ supp q = {}" + shows "p + q = q + p" +unfolding expand_perm_eq +proof + fix a::"atom" + show "(p + q) \ a = (q + p) \ a" + proof - + { assume "a \ supp p" "a \ supp q" + then have "(p + q) \ a = (q + p) \ a" + by (simp add: supp_perm) + } + moreover + { assume a: "a \ supp p" "a \ supp q" + then have "p \ a \ supp p" by (simp add: supp_perm) + then have "p \ a \ supp q" using asm by auto + with a have "(p + q) \ a = (q + p) \ a" + by (simp add: supp_perm) + } + moreover + { assume a: "a \ supp p" "a \ supp q" + then have "q \ a \ supp q" by (simp add: supp_perm) + then have "q \ a \ supp p" using asm by auto + with a have "(p + q) \ a = (q + p) \ a" + by (simp add: supp_perm) + } + ultimately show "(p + q) \ a = (q + p) \ a" + using asm by blast + qed +qed + +section {* Finite Support instances for other types *} + + +subsection {* Type @{typ "'a \ 'b"} is finitely-supported. *} + +lemma supp_Pair: + shows "supp (x, y) = supp x \ supp y" + by (simp add: supp_def Collect_imp_eq Collect_neg_eq) + +lemma fresh_Pair: + shows "a \ (x, y) \ a \ x \ a \ y" + by (simp add: fresh_def supp_Pair) + +lemma supp_Unit: + shows "supp () = {}" + by (simp add: supp_def) + +lemma fresh_Unit: + shows "a \ ()" + by (simp add: fresh_def supp_Unit) + +instance prod :: (fs, fs) fs +apply default +apply (induct_tac x) +apply (simp add: supp_Pair finite_supp) +done + + +subsection {* Type @{typ "'a + 'b"} is finitely supported *} + +lemma supp_Inl: + shows "supp (Inl x) = supp x" + by (simp add: supp_def) + +lemma supp_Inr: + shows "supp (Inr x) = supp x" + by (simp add: supp_def) + +lemma fresh_Inl: + shows "a \ Inl x \ a \ x" + by (simp add: fresh_def supp_Inl) + +lemma fresh_Inr: + shows "a \ Inr y \ a \ y" + by (simp add: fresh_def supp_Inr) + +instance sum :: (fs, fs) fs +apply default +apply (induct_tac x) +apply (simp_all add: supp_Inl supp_Inr finite_supp) +done + + +subsection {* Type @{typ "'a option"} is finitely supported *} + +lemma supp_None: + shows "supp None = {}" +by (simp add: supp_def) + +lemma supp_Some: + shows "supp (Some x) = supp x" + by (simp add: supp_def) + +lemma fresh_None: + shows "a \ None" + by (simp add: fresh_def supp_None) + +lemma fresh_Some: + shows "a \ Some x \ a \ x" + by (simp add: fresh_def supp_Some) + +instance option :: (fs) fs +apply default +apply (induct_tac x) +apply (simp_all add: supp_None supp_Some finite_supp) +done + + +subsubsection {* Type @{typ "'a list"} is finitely supported *} + +lemma supp_Nil: + shows "supp [] = {}" + by (simp add: supp_def) + +lemma supp_Cons: + shows "supp (x # xs) = supp x \ supp xs" +by (simp add: supp_def Collect_imp_eq Collect_neg_eq) + +lemma fresh_Nil: + shows "a \ []" + by (simp add: fresh_def supp_Nil) + +lemma fresh_Cons: + shows "a \ (x # xs) \ a \ x \ a \ xs" + by (simp add: fresh_def supp_Cons) + +instance list :: (fs) fs +apply default +apply (induct_tac x) +apply (simp_all add: supp_Nil supp_Cons finite_supp) +done + + +section {* Support and Freshness for Applications *} + +lemma fresh_conv_MOST: + shows "a \ x \ (MOST b. (a \ b) \ x = x)" + unfolding fresh_def supp_def + unfolding MOST_iff_cofinite by simp + +lemma supp_subset_fresh: + assumes a: "\a. a \ x \ a \ y" + shows "supp y \ supp x" + using a + unfolding fresh_def + by blast + +lemma fresh_fun_app: + assumes "a \ f" and "a \ x" + shows "a \ f x" + using assms + unfolding fresh_conv_MOST + unfolding permute_fun_app_eq + by (elim MOST_rev_mp, simp) + +lemma supp_fun_app: + shows "supp (f x) \ (supp f) \ (supp x)" + using fresh_fun_app + unfolding fresh_def + by auto + +text {* Support of Equivariant Functions *} + +lemma supp_fun_eqvt: + assumes a: "\p. p \ f = f" + shows "supp f = {}" + unfolding supp_def + using a by simp + +lemma fresh_fun_eqvt_app: + assumes a: "\p. p \ f = f" + shows "a \ x \ a \ f x" +proof - + from a have "supp f = {}" by (simp add: supp_fun_eqvt) + then show "a \ x \ a \ f x" + unfolding fresh_def + using supp_fun_app by auto +qed + + +section {* Support of Finite Sets of Finitely Supported Elements *} + +lemma Union_fresh: + shows "a \ S \ a \ (\x \ S. supp x)" + unfolding Union_image_eq[symmetric] + apply(rule_tac f="\S. \ supp ` S" in fresh_fun_eqvt_app) + apply(simp add: permute_fun_def UNION_def Collect_def Bex_def ex_eqvt mem_def conj_eqvt) + apply(subst permute_fun_app_eq) + back + apply(simp add: supp_eqvt) + apply(assumption) + done + +lemma Union_supports_set: + shows "(\x \ S. supp x) supports S" +proof - + { fix a b + have "\x \ S. (a \ b) \ x = x \ (a \ b) \ S = S" + unfolding permute_set_eq by force + } + then show "(\x \ S. supp x) supports S" + unfolding supports_def + by (simp add: fresh_def[symmetric] swap_fresh_fresh) +qed + +lemma Union_of_finite_supp_sets: + fixes S::"('a::fs set)" + assumes fin: "finite S" + shows "finite (\x\S. supp x)" + using fin by (induct) (auto simp add: finite_supp) + +lemma Union_included_in_supp: + fixes S::"('a::fs set)" + assumes fin: "finite S" + shows "(\x\S. supp x) \ supp S" +proof - + have "(\x\S. supp x) = supp (\x\S. supp x)" + by (rule supp_finite_atom_set[symmetric]) + (rule Union_of_finite_supp_sets[OF fin]) + also have "\ \ supp S" + by (rule supp_subset_fresh) + (simp add: Union_fresh) + finally show "(\x\S. supp x) \ supp S" . +qed + +lemma supp_of_finite_sets: + fixes S::"('a::fs set)" + assumes fin: "finite S" + shows "(supp S) = (\x\S. supp x)" +apply(rule subset_antisym) +apply(rule supp_is_subset) +apply(rule Union_supports_set) +apply(rule Union_of_finite_supp_sets[OF fin]) +apply(rule Union_included_in_supp[OF fin]) +done + +lemma finite_sets_supp: + fixes S::"('a::fs set)" + assumes "finite S" + shows "finite (supp S)" +using assms +by (simp only: supp_of_finite_sets Union_of_finite_supp_sets) + +lemma supp_of_finite_union: + fixes S T::"('a::fs) set" + assumes fin1: "finite S" + and fin2: "finite T" + shows "supp (S \ T) = supp S \ supp T" + using fin1 fin2 + by (simp add: supp_of_finite_sets) + +lemma supp_of_finite_insert: + fixes S::"('a::fs) set" + assumes fin: "finite S" + shows "supp (insert x S) = supp x \ supp S" + using fin + by (simp add: supp_of_finite_sets) + + +subsection {* Type @{typ "'a fset"} is finitely supported *} + +lemma fset_eqvt: + shows "p \ (fset S) = fset (p \ S)" + by (lifting set_eqvt) + +lemma supp_fset [simp]: + shows "supp (fset S) = supp S" + unfolding supp_def + by (simp add: fset_eqvt fset_cong) + +lemma supp_empty_fset [simp]: + shows "supp {||} = {}" + unfolding supp_def + by simp + +lemma supp_insert_fset [simp]: + fixes x::"'a::fs" + and S::"'a fset" + shows "supp (insert_fset x S) = supp x \ supp S" + apply(subst supp_fset[symmetric]) + apply(simp add: supp_fset supp_of_finite_insert) + done + +lemma fset_finite_supp: + fixes S::"('a::fs) fset" + shows "finite (supp S)" + by (induct S) (simp_all add: finite_supp) + + +instance fset :: (fs) fs + apply (default) + apply (rule fset_finite_supp) + done + + +section {* Fresh-Star *} + + +text {* The fresh-star generalisation of fresh is used in strong + induction principles. *} + +definition + fresh_star :: "atom set \ 'a::pt \ bool" ("_ \* _" [80,80] 80) +where + "as \* x \ \a \ as. a \ x" + +lemma fresh_star_supp_conv: + shows "supp x \* y \ supp y \* x" +by (auto simp add: fresh_star_def fresh_def) + +lemma fresh_star_prod: + fixes as::"atom set" + shows "as \* (x, y) = (as \* x \ as \* y)" + by (auto simp add: fresh_star_def fresh_Pair) + +lemma fresh_star_union: + shows "(as \ bs) \* x = (as \* x \ bs \* x)" + by (auto simp add: fresh_star_def) + +lemma fresh_star_insert: + shows "(insert a as) \* x = (a \ x \ as \* x)" + by (auto simp add: fresh_star_def) + +lemma fresh_star_Un_elim: + "((as \ bs) \* x \ PROP C) \ (as \* x \ bs \* x \ PROP C)" + unfolding fresh_star_def + apply(rule) + apply(erule meta_mp) + apply(auto) + done + +lemma fresh_star_insert_elim: + "(insert a as \* x \ PROP C) \ (a \ x \ as \* x \ PROP C)" + unfolding fresh_star_def + by rule (simp_all add: fresh_star_def) + +lemma fresh_star_empty_elim: + "({} \* x \ PROP C) \ PROP C" + by (simp add: fresh_star_def) + +lemma fresh_star_unit_elim: + shows "(a \* () \ PROP C) \ PROP C" + by (simp add: fresh_star_def fresh_Unit) + +lemma fresh_star_prod_elim: + shows "(a \* (x, y) \ PROP C) \ (a \* x \ a \* y \ PROP C)" + by (rule, simp_all add: fresh_star_prod) + +lemma fresh_star_zero: + shows "as \* (0::perm)" + unfolding fresh_star_def + by (simp add: fresh_zero_perm) + +lemma fresh_star_plus: + fixes p q::perm + shows "\a \* p; a \* q\ \ a \* (p + q)" + unfolding fresh_star_def + by (simp add: fresh_plus_perm) + +lemma fresh_star_permute_iff: + shows "(p \ a) \* (p \ x) \ a \* x" + unfolding fresh_star_def + by (metis mem_permute_iff permute_minus_cancel(1) fresh_permute_iff) + +lemma fresh_star_eqvt: + shows "(p \ (as \* x)) = (p \ as) \* (p \ x)" +unfolding fresh_star_def +unfolding Ball_def +apply(simp add: all_eqvt) +apply(subst permute_fun_def) +apply(simp add: imp_eqvt fresh_eqvt mem_eqvt) +done + + +section {* Induction principle for permutations *} + + +lemma perm_struct_induct[consumes 1, case_names zero swap]: + assumes S: "supp p \ S" + and zero: "P 0" + and swap: "\p a b. \P p; supp p \ S; a \ S; b \ S; a \ b; sort_of a = sort_of b\ \ P ((a \ b) + p)" + shows "P p" +proof - + have "finite (supp p)" by (simp add: finite_supp) + then show "P p" using S + proof(induct A\"supp p" arbitrary: p rule: finite_psubset_induct) + case (psubset p) + then have ih: "\q. supp q \ supp p \ P q" by auto + have as: "supp p \ S" by fact + { assume "supp p = {}" + then have "p = 0" by (simp add: supp_perm expand_perm_eq) + then have "P p" using zero by simp + } + moreover + { assume "supp p \ {}" + then obtain a where a0: "a \ supp p" by blast + then have a1: "p \ a \ S" "a \ S" "sort_of (p \ a) = sort_of a" "p \ a \ a" + using as by (auto simp add: supp_atom supp_perm swap_atom) + let ?q = "(p \ a \ a) + p" + have a2: "supp ?q \ supp p" unfolding supp_perm by (auto simp add: swap_atom) + moreover + have "a \ supp ?q" by (simp add: supp_perm) + then have "supp ?q \ supp p" using a0 by auto + ultimately have "supp ?q \ supp p" using a2 by auto + then have "P ?q" using ih by simp + moreover + have "supp ?q \ S" using as a2 by simp + ultimately have "P ((p \ a \ a) + ?q)" using as a1 swap by simp + moreover + have "p = (p \ a \ a) + ?q" by (simp add: expand_perm_eq) + ultimately have "P p" by simp + } + ultimately show "P p" by blast + qed +qed + +lemma perm_simple_struct_induct[case_names zero swap]: + assumes zero: "P 0" + and swap: "\p a b. \P p; a \ b; sort_of a = sort_of b\ \ P ((a \ b) + p)" + shows "P p" +by (rule_tac S="supp p" in perm_struct_induct) + (auto intro: zero swap) + +lemma perm_subset_induct[consumes 1, case_names zero swap plus]: + assumes S: "supp p \ S" + assumes zero: "P 0" + assumes swap: "\a b. \sort_of a = sort_of b; a \ b; a \ S; b \ S\ \ P (a \ b)" + assumes plus: "\p1 p2. \P p1; P p2; supp p1 \ S; supp p2 \ S\ \ P (p1 + p2)" + shows "P p" +using S +by (induct p rule: perm_struct_induct) + (auto intro: zero plus swap simp add: supp_swap) + +lemma supp_perm_eq: + assumes "(supp x) \* p" + shows "p \ x = x" +proof - + from assms have "supp p \ {a. a \ x}" + unfolding supp_perm fresh_star_def fresh_def by auto + then show "p \ x = x" + proof (induct p rule: perm_struct_induct) + case zero + show "0 \ x = x" by simp + next + case (swap p a b) + then have "a \ x" "b \ x" "p \ x = x" by simp_all + then show "((a \ b) + p) \ x = x" by (simp add: swap_fresh_fresh) + qed +qed + +lemma supp_perm_eq_test: + assumes "(supp x) \* p" + shows "p \ x = x" +proof - + from assms have "supp p \ {a. a \ x}" + unfolding supp_perm fresh_star_def fresh_def by auto + then show "p \ x = x" + proof (induct p rule: perm_subset_induct) + case zero + show "0 \ x = x" by simp + next + case (swap a b) + then have "a \ x" "b \ x" by simp_all + then show "(a \ b) \ x = x" by (simp add: swap_fresh_fresh) + next + case (plus p1 p2) + have "p1 \ x = x" "p2 \ x = x" by fact+ + then show "(p1 + p2) \ x = x" by simp + qed +qed + + +section {* Avoiding of atom sets *} + +text {* + For every set of atoms, there is another set of atoms + avoiding a finitely supported c and there is a permutation + which 'translates' between both sets. +*} + +lemma at_set_avoiding_aux: + fixes Xs::"atom set" + and As::"atom set" + assumes b: "Xs \ As" + and c: "finite As" + shows "\p. (p \ Xs) \ As = {} \ (supp p) \ (Xs \ (p \ Xs))" +proof - + from b c have "finite Xs" by (rule finite_subset) + then show ?thesis using b + proof (induct rule: finite_subset_induct) + case empty + have "0 \ {} \ As = {}" by simp + moreover + have "supp (0::perm) \ {} \ 0 \ {}" by (simp add: supp_zero_perm) + ultimately show ?case by blast + next + case (insert x Xs) + then obtain p where + p1: "(p \ Xs) \ As = {}" and + p2: "supp p \ (Xs \ (p \ Xs))" by blast + from `x \ As` p1 have "x \ p \ Xs" by fast + with `x \ Xs` p2 have "x \ supp p" by fast + hence px: "p \ x = x" unfolding supp_perm by simp + have "finite (As \ p \ Xs)" + using `finite As` `finite Xs` + by (simp add: permute_set_eq_image) + then obtain y where "y \ (As \ p \ Xs)" "sort_of y = sort_of x" + by (rule obtain_atom) + hence y: "y \ As" "y \ p \ Xs" "sort_of y = sort_of x" + by simp_all + let ?q = "(x \ y) + p" + have q: "?q \ insert x Xs = insert y (p \ Xs)" + unfolding insert_eqvt + using `p \ x = x` `sort_of y = sort_of x` + using `x \ p \ Xs` `y \ p \ Xs` + by (simp add: swap_atom swap_set_not_in) + have "?q \ insert x Xs \ As = {}" + using `y \ As` `p \ Xs \ As = {}` + unfolding q by simp + moreover + have "supp ?q \ insert x Xs \ ?q \ insert x Xs" + using p2 unfolding q + by (intro subset_trans [OF supp_plus_perm]) + (auto simp add: supp_swap) + ultimately show ?case by blast + qed +qed + +lemma at_set_avoiding: + assumes a: "finite Xs" + and b: "finite (supp c)" + obtains p::"perm" where "(p \ Xs)\*c" and "(supp p) \ (Xs \ (p \ Xs))" + using a b at_set_avoiding_aux [where Xs="Xs" and As="Xs \ supp c"] + unfolding fresh_star_def fresh_def by blast + +lemma at_set_avoiding2: + assumes "finite xs" + and "finite (supp c)" "finite (supp x)" + and "xs \* x" + shows "\p. (p \ xs) \* c \ supp x \* p" +using assms +apply(erule_tac c="(c, x)" in at_set_avoiding) +apply(simp add: supp_Pair) +apply(rule_tac x="p" in exI) +apply(simp add: fresh_star_prod) +apply(rule fresh_star_supp_conv) +apply(auto simp add: fresh_star_def) +done + +lemma at_set_avoiding2_atom: + assumes "finite (supp c)" "finite (supp x)" + and b: "a \ x" + shows "\p. (p \ a) \ c \ supp x \* p" +proof - + have a: "{a} \* x" unfolding fresh_star_def by (simp add: b) + obtain p where p1: "(p \ {a}) \* c" and p2: "supp x \* p" + using at_set_avoiding2[of "{a}" "c" "x"] assms a by blast + have c: "(p \ a) \ c" using p1 + unfolding fresh_star_def Ball_def + by(erule_tac x="p \ a" in allE) (simp add: permute_set_eq) + hence "p \ a \ c \ supp x \* p" using p2 by blast + then show "\p. (p \ a) \ c \ supp x \* p" by blast +qed + + +section {* Concrete Atoms Types *} + +text {* + Class @{text at_base} allows types containing multiple sorts of atoms. + Class @{text at} only allows types with a single sort. +*} + +class at_base = pt + + fixes atom :: "'a \ atom" + assumes atom_eq_iff [simp]: "atom a = atom b \ a = b" + assumes atom_eqvt: "p \ (atom a) = atom (p \ a)" + +class at = at_base + + assumes sort_of_atom_eq [simp]: "sort_of (atom a) = sort_of (atom b)" + +lemma supp_at_base: + fixes a::"'a::at_base" + shows "supp a = {atom a}" + by (simp add: supp_atom [symmetric] supp_def atom_eqvt) + +lemma fresh_at_base: + shows "a \ b \ a \ atom b" + unfolding fresh_def by (simp add: supp_at_base) + +instance at_base < fs +proof qed (simp add: supp_at_base) + +lemma at_base_infinite [simp]: + shows "infinite (UNIV :: 'a::at_base set)" (is "infinite ?U") +proof + obtain a :: 'a where "True" by auto + assume "finite ?U" + hence "finite (atom ` ?U)" + by (rule finite_imageI) + then obtain b where b: "b \ atom ` ?U" "sort_of b = sort_of (atom a)" + by (rule obtain_atom) + from b(2) have "b = atom ((atom a \ b) \ a)" + unfolding atom_eqvt [symmetric] + by (simp add: swap_atom) + hence "b \ atom ` ?U" by simp + with b(1) show "False" by simp +qed + +lemma swap_at_base_simps [simp]: + fixes x y::"'a::at_base" + shows "sort_of (atom x) = sort_of (atom y) \ (atom x \ atom y) \ x = y" + and "sort_of (atom x) = sort_of (atom y) \ (atom x \ atom y) \ y = x" + and "atom x \ a \ atom x \ b \ (a \ b) \ x = x" + unfolding atom_eq_iff [symmetric] + unfolding atom_eqvt [symmetric] + by simp_all + +lemma obtain_at_base: + assumes X: "finite X" + obtains a::"'a::at_base" where "atom a \ X" +proof - + have "inj (atom :: 'a \ atom)" + by (simp add: inj_on_def) + with X have "finite (atom -` X :: 'a set)" + by (rule finite_vimageI) + with at_base_infinite have "atom -` X \ (UNIV :: 'a set)" + by auto + then obtain a :: 'a where "atom a \ X" + by auto + thus ?thesis .. +qed + +lemma supp_finite_set_at_base: + assumes a: "finite S" + shows "supp S = atom ` S" +apply(simp add: supp_of_finite_sets[OF a]) +apply(simp add: supp_at_base) +apply(auto) +done + +section {* Infrastructure for concrete atom types *} + +section {* A swapping operation for concrete atoms *} + +definition + flip :: "'a::at_base \ 'a \ perm" ("'(_ \ _')") +where + "(a \ b) = (atom a \ atom b)" + +lemma flip_self [simp]: "(a \ a) = 0" + unfolding flip_def by (rule swap_self) + +lemma flip_commute: "(a \ b) = (b \ a)" + unfolding flip_def by (rule swap_commute) + +lemma minus_flip [simp]: "- (a \ b) = (a \ b)" + unfolding flip_def by (rule minus_swap) + +lemma add_flip_cancel: "(a \ b) + (a \ b) = 0" + unfolding flip_def by (rule swap_cancel) + +lemma permute_flip_cancel [simp]: "(a \ b) \ (a \ b) \ x = x" + unfolding permute_plus [symmetric] add_flip_cancel by simp + +lemma permute_flip_cancel2 [simp]: "(a \ b) \ (b \ a) \ x = x" + by (simp add: flip_commute) + +lemma flip_eqvt: + fixes a b c::"'a::at_base" + shows "p \ (a \ b) = (p \ a \ p \ b)" + unfolding flip_def + by (simp add: swap_eqvt atom_eqvt) + +lemma flip_at_base_simps [simp]: + shows "sort_of (atom a) = sort_of (atom b) \ (a \ b) \ a = b" + and "sort_of (atom a) = sort_of (atom b) \ (a \ b) \ b = a" + and "\a \ c; b \ c\ \ (a \ b) \ c = c" + and "sort_of (atom a) \ sort_of (atom b) \ (a \ b) \ x = x" + unfolding flip_def + unfolding atom_eq_iff [symmetric] + unfolding atom_eqvt [symmetric] + by simp_all + +text {* the following two lemmas do not hold for at_base, + only for single sort atoms from at *} + +lemma permute_flip_at: + fixes a b c::"'a::at" + shows "(a \ b) \ c = (if c = a then b else if c = b then a else c)" + unfolding flip_def + apply (rule atom_eq_iff [THEN iffD1]) + apply (subst atom_eqvt [symmetric]) + apply (simp add: swap_atom) + done + +lemma flip_at_simps [simp]: + fixes a b::"'a::at" + shows "(a \ b) \ a = b" + and "(a \ b) \ b = a" + unfolding permute_flip_at by simp_all + +lemma flip_fresh_fresh: + fixes a b::"'a::at_base" + assumes "atom a \ x" "atom b \ x" + shows "(a \ b) \ x = x" +using assms +by (simp add: flip_def swap_fresh_fresh) + +subsection {* Syntax for coercing at-elements to the atom-type *} + +syntax + "_atom_constrain" :: "logic \ type \ logic" ("_:::_" [4, 0] 3) + +translations + "_atom_constrain a t" => "CONST atom (_constrain a t)" + + +subsection {* A lemma for proving instances of class @{text at}. *} + +setup {* Sign.add_const_constraint (@{const_name "permute"}, NONE) *} +setup {* Sign.add_const_constraint (@{const_name "atom"}, NONE) *} + +text {* + New atom types are defined as subtypes of @{typ atom}. +*} + +lemma exists_eq_simple_sort: + shows "\a. a \ {a. sort_of a = s}" + by (rule_tac x="Atom s 0" in exI, simp) + +lemma exists_eq_sort: + shows "\a. a \ {a. sort_of a \ range sort_fun}" + by (rule_tac x="Atom (sort_fun x) y" in exI, simp) + +lemma at_base_class: + fixes sort_fun :: "'b \atom_sort" + fixes Rep :: "'a \ atom" and Abs :: "atom \ 'a" + assumes type: "type_definition Rep Abs {a. sort_of a \ range sort_fun}" + assumes atom_def: "\a. atom a = Rep a" + assumes permute_def: "\p a. p \ a = Abs (p \ Rep a)" + shows "OFCLASS('a, at_base_class)" +proof + interpret type_definition Rep Abs "{a. sort_of a \ range sort_fun}" by (rule type) + have sort_of_Rep: "\a. sort_of (Rep a) \ range sort_fun" using Rep by simp + fix a b :: 'a and p p1 p2 :: perm + show "0 \ a = a" + unfolding permute_def by (simp add: Rep_inverse) + show "(p1 + p2) \ a = p1 \ p2 \ a" + unfolding permute_def by (simp add: Abs_inverse sort_of_Rep) + show "atom a = atom b \ a = b" + unfolding atom_def by (simp add: Rep_inject) + show "p \ atom a = atom (p \ a)" + unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep) +qed + +(* +lemma at_class: + fixes s :: atom_sort + fixes Rep :: "'a \ atom" and Abs :: "atom \ 'a" + assumes type: "type_definition Rep Abs {a. sort_of a \ range (\x::unit. s)}" + assumes atom_def: "\a. atom a = Rep a" + assumes permute_def: "\p a. p \ a = Abs (p \ Rep a)" + shows "OFCLASS('a, at_class)" +proof + interpret type_definition Rep Abs "{a. sort_of a \ range (\x::unit. s)}" by (rule type) + have sort_of_Rep: "\a. sort_of (Rep a) = s" using Rep by (simp add: image_def) + fix a b :: 'a and p p1 p2 :: perm + show "0 \ a = a" + unfolding permute_def by (simp add: Rep_inverse) + show "(p1 + p2) \ a = p1 \ p2 \ a" + unfolding permute_def by (simp add: Abs_inverse sort_of_Rep) + show "sort_of (atom a) = sort_of (atom b)" + unfolding atom_def by (simp add: sort_of_Rep) + show "atom a = atom b \ a = b" + unfolding atom_def by (simp add: Rep_inject) + show "p \ atom a = atom (p \ a)" + unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep) +qed +*) + +lemma at_class: + fixes s :: atom_sort + fixes Rep :: "'a \ atom" and Abs :: "atom \ 'a" + assumes type: "type_definition Rep Abs {a. sort_of a = s}" + assumes atom_def: "\a. atom a = Rep a" + assumes permute_def: "\p a. p \ a = Abs (p \ Rep a)" + shows "OFCLASS('a, at_class)" +proof + interpret type_definition Rep Abs "{a. sort_of a = s}" by (rule type) + have sort_of_Rep: "\a. sort_of (Rep a) = s" using Rep by (simp add: image_def) + fix a b :: 'a and p p1 p2 :: perm + show "0 \ a = a" + unfolding permute_def by (simp add: Rep_inverse) + show "(p1 + p2) \ a = p1 \ p2 \ a" + unfolding permute_def by (simp add: Abs_inverse sort_of_Rep) + show "sort_of (atom a) = sort_of (atom b)" + unfolding atom_def by (simp add: sort_of_Rep) + show "atom a = atom b \ a = b" + unfolding atom_def by (simp add: Rep_inject) + show "p \ atom a = atom (p \ a)" + unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep) +qed + +setup {* Sign.add_const_constraint + (@{const_name "permute"}, SOME @{typ "perm \ 'a::pt \ 'a"}) *} +setup {* Sign.add_const_constraint + (@{const_name "atom"}, SOME @{typ "'a::at_base \ atom"}) *} + + + +section {* The freshness lemma according to Andy Pitts *} + +lemma freshness_lemma: + fixes h :: "'a::at \ 'b::pt" + assumes a: "\a. atom a \ (h, h a)" + shows "\x. \a. atom a \ h \ h a = x" +proof - + from a obtain b where a1: "atom b \ h" and a2: "atom b \ h b" + by (auto simp add: fresh_Pair) + show "\x. \a. atom a \ h \ h a = x" + proof (intro exI allI impI) + fix a :: 'a + assume a3: "atom a \ h" + show "h a = h b" + proof (cases "a = b") + assume "a = b" + thus "h a = h b" by simp + next + assume "a \ b" + hence "atom a \ b" by (simp add: fresh_at_base) + with a3 have "atom a \ h b" + by (rule fresh_fun_app) + with a2 have d1: "(atom b \ atom a) \ (h b) = (h b)" + by (rule swap_fresh_fresh) + from a1 a3 have d2: "(atom b \ atom a) \ h = h" + by (rule swap_fresh_fresh) + from d1 have "h b = (atom b \ atom a) \ (h b)" by simp + also have "\ = ((atom b \ atom a) \ h) ((atom b \ atom a) \ b)" + by (rule permute_fun_app_eq) + also have "\ = h a" + using d2 by simp + finally show "h a = h b" by simp + qed + qed +qed + +lemma freshness_lemma_unique: + fixes h :: "'a::at \ 'b::pt" + assumes a: "\a. atom a \ (h, h a)" + shows "\!x. \a. atom a \ h \ h a = x" +proof (rule ex_ex1I) + from a show "\x. \a. atom a \ h \ h a = x" + by (rule freshness_lemma) +next + fix x y + assume x: "\a. atom a \ h \ h a = x" + assume y: "\a. atom a \ h \ h a = y" + from a x y show "x = y" + by (auto simp add: fresh_Pair) +qed + +text {* packaging the freshness lemma into a function *} + +definition + fresh_fun :: "('a::at \ 'b::pt) \ 'b" +where + "fresh_fun h = (THE x. \a. atom a \ h \ h a = x)" + +lemma fresh_fun_apply: + fixes h :: "'a::at \ 'b::pt" + assumes a: "\a. atom a \ (h, h a)" + assumes b: "atom a \ h" + shows "fresh_fun h = h a" +unfolding fresh_fun_def +proof (rule the_equality) + show "\a'. atom a' \ h \ h a' = h a" + proof (intro strip) + fix a':: 'a + assume c: "atom a' \ h" + from a have "\x. \a. atom a \ h \ h a = x" by (rule freshness_lemma) + with b c show "h a' = h a" by auto + qed +next + fix fr :: 'b + assume "\a. atom a \ h \ h a = fr" + with b show "fr = h a" by auto +qed + +lemma fresh_fun_apply': + fixes h :: "'a::at \ 'b::pt" + assumes a: "atom a \ h" "atom a \ h a" + shows "fresh_fun h = h a" + apply (rule fresh_fun_apply) + apply (auto simp add: fresh_Pair intro: a) + done + +lemma fresh_fun_eqvt: + fixes h :: "'a::at \ 'b::pt" + assumes a: "\a. atom a \ (h, h a)" + shows "p \ (fresh_fun h) = fresh_fun (p \ h)" + using a + apply (clarsimp simp add: fresh_Pair) + apply (subst fresh_fun_apply', assumption+) + apply (drule fresh_permute_iff [where p=p, THEN iffD2]) + apply (drule fresh_permute_iff [where p=p, THEN iffD2]) + apply (simp add: atom_eqvt permute_fun_app_eq [where f=h]) + apply (erule (1) fresh_fun_apply' [symmetric]) + done + +lemma fresh_fun_supports: + fixes h :: "'a::at \ 'b::pt" + assumes a: "\a. atom a \ (h, h a)" + shows "(supp h) supports (fresh_fun h)" + apply (simp add: supports_def fresh_def [symmetric]) + apply (simp add: fresh_fun_eqvt [OF a] swap_fresh_fresh) + done + +notation fresh_fun (binder "FRESH " 10) + +lemma FRESH_f_iff: + fixes P :: "'a::at \ 'b::pure" + fixes f :: "'b \ 'c::pure" + assumes P: "finite (supp P)" + shows "(FRESH x. f (P x)) = f (FRESH x. P x)" +proof - + obtain a::'a where "atom a \ supp P" + using P by (rule obtain_at_base) + hence "atom a \ P" + by (simp add: fresh_def) + show "(FRESH x. f (P x)) = f (FRESH x. P x)" + apply (subst fresh_fun_apply' [where a=a, OF _ pure_fresh]) + apply (cut_tac `atom a \ P`) + apply (simp add: fresh_conv_MOST) + apply (elim MOST_rev_mp, rule MOST_I, clarify) + apply (simp add: permute_fun_def permute_pure fun_eq_iff) + apply (subst fresh_fun_apply' [where a=a, OF `atom a \ P` pure_fresh]) + apply (rule refl) + done +qed + +lemma FRESH_binop_iff: + fixes P :: "'a::at \ 'b::pure" + fixes Q :: "'a::at \ 'c::pure" + fixes binop :: "'b \ 'c \ 'd::pure" + assumes P: "finite (supp P)" + and Q: "finite (supp Q)" + shows "(FRESH x. binop (P x) (Q x)) = binop (FRESH x. P x) (FRESH x. Q x)" +proof - + from assms have "finite (supp P \ supp Q)" by simp + then obtain a::'a where "atom a \ (supp P \ supp Q)" + by (rule obtain_at_base) + hence "atom a \ P" and "atom a \ Q" + by (simp_all add: fresh_def) + show ?thesis + apply (subst fresh_fun_apply' [where a=a, OF _ pure_fresh]) + apply (cut_tac `atom a \ P` `atom a \ Q`) + apply (simp add: fresh_conv_MOST) + apply (elim MOST_rev_mp, rule MOST_I, clarify) + apply (simp add: permute_fun_def permute_pure fun_eq_iff) + apply (subst fresh_fun_apply' [where a=a, OF `atom a \ P` pure_fresh]) + apply (subst fresh_fun_apply' [where a=a, OF `atom a \ Q` pure_fresh]) + apply (rule refl) + done +qed + +lemma FRESH_conj_iff: + fixes P Q :: "'a::at \ bool" + assumes P: "finite (supp P)" and Q: "finite (supp Q)" + shows "(FRESH x. P x \ Q x) \ (FRESH x. P x) \ (FRESH x. Q x)" +using P Q by (rule FRESH_binop_iff) + +lemma FRESH_disj_iff: + fixes P Q :: "'a::at \ bool" + assumes P: "finite (supp P)" and Q: "finite (supp Q)" + shows "(FRESH x. P x \ Q x) \ (FRESH x. P x) \ (FRESH x. Q x)" +using P Q by (rule FRESH_binop_iff) + + +section {* Library functions for the nominal infrastructure *} + +use "nominal_library.ML" + + +section {* Automation for creating concrete atom types *} + +text {* at the moment only single-sort concrete atoms are supported *} + +use "nominal_atoms.ML" + + + +end