diff -r 3b8741ecfda3 -r 8054f4988672 Nominal/FSet.thy --- a/Nominal/FSet.thy Fri Oct 15 16:23:26 2010 +0900 +++ b/Nominal/FSet.thy Fri Oct 15 16:32:34 2010 +0900 @@ -824,10 +824,8 @@ by (descending) (auto simp add: fcard_raw_def card_gt_0_iff) lemma fcard_not_fin: - assumes a: "x |\| S" - shows "fcard (finsert x S) = Suc (fcard S)" - using a - by (descending) (simp add: memb_def fcard_raw_def) + shows "(x |\| S) = (fcard (finsert x S) = Suc (fcard S))" + by (descending) (auto simp add: memb_def fcard_raw_def insert_absorb) lemma fcard_suc: shows "fcard S = Suc n \ \x T. x |\| T \ S = finsert x T \ fcard T = n" @@ -1204,7 +1202,7 @@ by (rule card_Diff2_less[OF finite_fset]) lemma fcard_delete1_le: - shows "fcard (fdelete x xs) <= fcard xs" + shows "fcard (fdelete x xs) \ fcard xs" unfolding fdelete_set fcard_set by (rule card_Diff1_le[OF finite_fset])