diff -r 4b0563bc4b03 -r 7d8949da7d99 Quot/Nominal/Fv.thy --- a/Quot/Nominal/Fv.thy Wed Feb 24 17:32:43 2010 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,399 +0,0 @@ -theory Fv -imports "Nominal2_Atoms" "Abs" -begin - -(* Bindings are given as a list which has a length being equal - to the length of the number of constructors. - - Each element is a list whose length is equal to the number - of arguents. - - Every element specifies bindings of this argument given as - a tuple: function, bound argument. - - Eg: -nominal_datatype - - C1 - | C2 x y z bind x in z - | C3 x y z bind f x in z bind g y in z - -yields: -[ - [], - [[], [], [(NONE, 0)]], - [[], [], [(SOME (Const f), 0), (Some (Const g), 1)]]] - -A SOME binding has to have a function returning an atom set, -and a NONE binding has to be on an argument that is an atom -or an atom set. - -How the procedure works: - For each of the defined datatypes, - For each of the constructors, - It creates a union of free variables for each argument. - - For an argument the free variables are the variables minus - bound variables. - - The variables are: - For an atom, a singleton set with the atom itself. - For an atom set, the atom set itself. - For a recursive argument, the appropriate fv function applied to it. - (* TODO: This one is not implemented *) - For other arguments it should be an appropriate fv function stored - in the database. - The bound variables are a union of results of all bindings that - involve the given argument. For a paricular binding the result is: - For a function applied to an argument this function with the argument. - For an atom, a singleton set with the atom itself. - For an atom set, the atom set itself. - For a recursive argument, the appropriate fv function applied to it. - (* TODO: This one is not implemented *) - For other arguments it should be an appropriate fv function stored - in the database. -*) - -ML {* - open Datatype_Aux; (* typ_of_dtyp, DtRec, ... *); - (* TODO: It is the same as one in 'nominal_atoms' *) - fun mk_atom ty = Const (@{const_name atom}, ty --> @{typ atom}); - val noatoms = @{term "{} :: atom set"}; - fun mk_single_atom x = HOLogic.mk_set @{typ atom} [mk_atom (type_of x) $ x]; - fun mk_union sets = - fold (fn a => fn b => - if a = noatoms then b else - if b = noatoms then a else - HOLogic.mk_binop @{const_name union} (a, b)) (rev sets) noatoms; - fun mk_diff a b = - if b = noatoms then a else - if b = a then noatoms else - HOLogic.mk_binop @{const_name minus} (a, b); - fun mk_atoms t = - let - val ty = fastype_of t; - val atom_ty = HOLogic.dest_setT ty --> @{typ atom}; - val img_ty = atom_ty --> ty --> @{typ "atom set"}; - in - (Const (@{const_name image}, img_ty) $ Const (@{const_name atom}, atom_ty) $ t) - end; - (* Copy from Term *) - fun is_funtype (Type ("fun", [_, _])) = true - | is_funtype _ = false; - (* Similar to one in USyntax *) - fun mk_pair (fst, snd) = - let val ty1 = fastype_of fst - val ty2 = fastype_of snd - val c = HOLogic.pair_const ty1 ty2 - in c $ fst $ snd - end; - -*} - -(* TODO: Notice datatypes without bindings and replace alpha with equality *) -ML {* -(* Currently needs just one full_tname to access Datatype *) -fun define_fv_alpha full_tname bindsall lthy = -let - val thy = ProofContext.theory_of lthy; - val {descr, ...} = Datatype.the_info thy full_tname; - val sorts = []; (* TODO *) - fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i); - val fv_names = Datatype_Prop.indexify_names (map (fn (i, _) => - "fv_" ^ name_of_typ (nth_dtyp i)) descr); - val fv_types = map (fn (i, _) => nth_dtyp i --> @{typ "atom set"}) descr; - val fv_frees = map Free (fv_names ~~ fv_types); - val alpha_names = Datatype_Prop.indexify_names (map (fn (i, _) => - "alpha_" ^ name_of_typ (nth_dtyp i)) descr); - val alpha_types = map (fn (i, _) => nth_dtyp i --> nth_dtyp i --> @{typ bool}) descr; - val alpha_frees = map Free (alpha_names ~~ alpha_types); - fun fv_alpha_constr i (cname, dts) bindcs = - let - val Ts = map (typ_of_dtyp descr sorts) dts; - val names = Name.variant_list ["pi"] (Datatype_Prop.make_tnames Ts); - val args = map Free (names ~~ Ts); - val names2 = Name.variant_list ("pi" :: names) (Datatype_Prop.make_tnames Ts); - val args2 = map Free (names2 ~~ Ts); - val c = Const (cname, Ts ---> (nth_dtyp i)); - val fv_c = nth fv_frees i; - val alpha = nth alpha_frees i; - fun fv_bind args (NONE, i) = - if is_rec_type (nth dts i) then (nth fv_frees (body_index (nth dts i))) $ (nth args i) else - (* TODO we assume that all can be 'atomized' *) - if (is_funtype o fastype_of) (nth args i) then mk_atoms (nth args i) else - mk_single_atom (nth args i) - | fv_bind args (SOME f, i) = f $ (nth args i); - fun fv_arg ((dt, x), bindxs) = - let - val arg = - if is_rec_type dt then nth fv_frees (body_index dt) $ x else - (* TODO: we just assume everything can be 'atomized' *) - if (is_funtype o fastype_of) x then mk_atoms x else - HOLogic.mk_set @{typ atom} [mk_atom (fastype_of x) $ x] - val sub = mk_union (map (fv_bind args) bindxs) - in - mk_diff arg sub - end; - val fv_eq = HOLogic.mk_Trueprop (HOLogic.mk_eq - (fv_c $ list_comb (c, args), mk_union (map fv_arg (dts ~~ args ~~ bindcs)))) - val alpha_rhs = - HOLogic.mk_Trueprop (alpha $ (list_comb (c, args)) $ (list_comb (c, args2))); - fun alpha_arg ((dt, bindxs), (arg, arg2)) = - if bindxs = [] then ( - if is_rec_type dt then (nth alpha_frees (body_index dt) $ arg $ arg2) - else (HOLogic.mk_eq (arg, arg2))) - else - if is_rec_type dt then let - (* THE HARD CASE *) - val lhs_binds = mk_union (map (fv_bind args) bindxs); - val lhs = mk_pair (lhs_binds, arg); - val rhs_binds = mk_union (map (fv_bind args2) bindxs); - val rhs = mk_pair (rhs_binds, arg2); - val alpha = nth alpha_frees (body_index dt); - val fv = nth fv_frees (body_index dt); - val alpha_gen_pre = Const (@{const_name alpha_gen}, dummyT) $ lhs $ alpha $ fv $ (Free ("pi", @{typ perm})) $ rhs; - val alpha_gen_t = Syntax.check_term lthy alpha_gen_pre - in - HOLogic.mk_exists ("pi", @{typ perm}, alpha_gen_t) - (* TODO Add some test that is makes sense *) - end else @{term "True"} - val alpha_lhss = map (HOLogic.mk_Trueprop o alpha_arg) (dts ~~ bindcs ~~ (args ~~ args2)) - val alpha_eq = Logic.list_implies (alpha_lhss, alpha_rhs) - in - (fv_eq, alpha_eq) - end; - fun fv_alpha_eq (i, (_, _, constrs)) binds = map2 (fv_alpha_constr i) constrs binds; - val (fv_eqs, alpha_eqs) = split_list (flat (map2 fv_alpha_eq descr bindsall)) - val add_binds = map (fn x => (Attrib.empty_binding, x)) - val (fvs, lthy') = (Primrec.add_primrec - (map (fn s => (Binding.name s, NONE, NoSyn)) fv_names) (add_binds fv_eqs) lthy) - val (alphas, lthy'') = (Inductive.add_inductive_i - {quiet_mode = false, verbose = true, alt_name = Binding.empty, - coind = false, no_elim = false, no_ind = false, skip_mono = true, fork_mono = false} - (map2 (fn x => fn y => ((Binding.name x, y), NoSyn)) alpha_names alpha_types) [] - (add_binds alpha_eqs) [] lthy') -in - ((fvs, alphas), lthy'') -end -*} - -(* tests -atom_decl name - -datatype ty = - Var "name set" - -ML {* Syntax.check_term @{context} (mk_atoms @{term "a :: name set"}) *} - -local_setup {* define_fv_alpha "Fv.ty" [[[[]]]] *} -print_theorems - - -datatype rtrm1 = - rVr1 "name" -| rAp1 "rtrm1" "rtrm1" -| rLm1 "name" "rtrm1" --"name is bound in trm1" -| rLt1 "bp" "rtrm1" "rtrm1" --"all variables in bp are bound in the 2nd trm1" -and bp = - BUnit -| BVr "name" -| BPr "bp" "bp" - -(* to be given by the user *) - -primrec - bv1 -where - "bv1 (BUnit) = {}" -| "bv1 (BVr x) = {atom x}" -| "bv1 (BPr bp1 bp2) = (bv1 bp1) \ (bv1 bp1)" - -setup {* snd o define_raw_perms ["rtrm1", "bp"] ["Fv.rtrm1", "Fv.bp"] *} - -local_setup {* define_fv_alpha "Fv.rtrm1" - [[[[]], [[], []], [[(NONE, 0)], [(NONE, 0)]], [[(SOME @{term bv1}, 0)], [], [(SOME @{term bv1}, 0)]]], - [[], [[]], [[], []]]] *} -print_theorems -*) - - -ML {* -fun alpha_inj_tac dist_inj intrs elims = - SOLVED' (asm_full_simp_tac (HOL_ss addsimps intrs)) ORELSE' - (rtac @{thm iffI} THEN' RANGE [ - (eresolve_tac elims THEN_ALL_NEW - asm_full_simp_tac (HOL_ss addsimps dist_inj) - ), - asm_full_simp_tac (HOL_ss addsimps intrs)]) -*} - -ML {* -fun build_alpha_inj_gl thm = - let - val prop = prop_of thm; - val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop); - val hyps = map HOLogic.dest_Trueprop (Logic.strip_imp_prems prop); - fun list_conj l = foldr1 HOLogic.mk_conj l; - in - if hyps = [] then concl - else HOLogic.mk_eq (concl, list_conj hyps) - end; -*} - -ML {* -fun build_alpha_inj intrs dist_inj elims ctxt = -let - val ((_, thms_imp), ctxt') = Variable.import false intrs ctxt; - val gls = map (HOLogic.mk_Trueprop o build_alpha_inj_gl) thms_imp; - fun tac _ = alpha_inj_tac dist_inj intrs elims 1; - val thms = map (fn gl => Goal.prove ctxt' [] [] gl tac) gls; -in - Variable.export ctxt' ctxt thms -end -*} - -ML {* -fun build_alpha_refl_gl alphas (x, y, z) = -let - fun build_alpha alpha = - let - val ty = domain_type (fastype_of alpha); - val var = Free(x, ty); - val var2 = Free(y, ty); - val var3 = Free(z, ty); - val symp = HOLogic.mk_imp (alpha $ var $ var2, alpha $ var2 $ var); - val transp = HOLogic.mk_imp (alpha $ var $ var2, - HOLogic.mk_all (z, ty, - HOLogic.mk_imp (alpha $ var2 $ var3, alpha $ var $ var3))) - in - ((alpha $ var $ var), (symp, transp)) - end; - val (refl_eqs, eqs) = split_list (map build_alpha alphas) - val (sym_eqs, trans_eqs) = split_list eqs - fun conj l = @{term Trueprop} $ foldr1 HOLogic.mk_conj l -in - (conj refl_eqs, (conj sym_eqs, conj trans_eqs)) -end -*} - -ML {* -fun reflp_tac induct inj = - rtac induct THEN_ALL_NEW - asm_full_simp_tac (HOL_ss addsimps inj) THEN_ALL_NEW - TRY o REPEAT_ALL_NEW (CHANGED o rtac conjI) THEN_ALL_NEW - (rtac @{thm exI[of _ "0 :: perm"]} THEN' - asm_full_simp_tac (HOL_ss addsimps - @{thms alpha_gen fresh_star_def fresh_zero_perm permute_zero ball_triv})) -*} - -ML {* -fun symp_tac induct inj eqvt = - ((rtac @{thm impI} THEN' etac induct) ORELSE' rtac induct) THEN_ALL_NEW - asm_full_simp_tac (HOL_ss addsimps inj) THEN_ALL_NEW - TRY o REPEAT_ALL_NEW (CHANGED o rtac conjI) THEN_ALL_NEW - (etac @{thm alpha_gen_compose_sym} THEN' eresolve_tac eqvt) -*} - -ML {* -fun imp_elim_tac case_rules = - Subgoal.FOCUS (fn {concl, context, ...} => - case term_of concl of - _ $ (_ $ asm $ _) => - let - fun filter_fn case_rule = ( - case Logic.strip_assums_hyp (prop_of case_rule) of - ((_ $ asmc) :: _) => - let - val thy = ProofContext.theory_of context - in - Pattern.matches thy (asmc, asm) - end - | _ => false) - val matching_rules = filter filter_fn case_rules - in - (rtac impI THEN' rotate_tac (~1) THEN' eresolve_tac matching_rules) 1 - end - | _ => no_tac - ) -*} - -ML {* -fun transp_tac ctxt induct alpha_inj term_inj distinct cases eqvt = - ((rtac impI THEN' etac induct) ORELSE' rtac induct) THEN_ALL_NEW - (TRY o rtac allI THEN' imp_elim_tac cases ctxt) THEN_ALL_NEW - ( - asm_full_simp_tac (HOL_ss addsimps alpha_inj @ term_inj @ distinct) THEN' - TRY o REPEAT_ALL_NEW (CHANGED o rtac conjI) THEN_ALL_NEW - (etac @{thm alpha_gen_compose_trans} THEN' RANGE [atac, eresolve_tac eqvt]) - ) -*} - -lemma transp_aux: - "(\xa ya. R xa ya \ (\z. R ya z \ R xa z)) \ transp R" - unfolding transp_def - by blast - -ML {* -fun equivp_tac reflps symps transps = - simp_tac (HOL_ss addsimps @{thms equivp_reflp_symp_transp reflp_def symp_def}) - THEN' rtac conjI THEN' rtac allI THEN' - resolve_tac reflps THEN' - rtac conjI THEN' rtac allI THEN' rtac allI THEN' - resolve_tac symps THEN' - rtac @{thm transp_aux} THEN' resolve_tac transps -*} - -ML {* -fun build_equivps alphas term_induct alpha_induct term_inj alpha_inj distinct cases eqvt ctxt = -let - val ([x, y, z], ctxt') = Variable.variant_fixes ["x","y","z"] ctxt; - val (reflg, (symg, transg)) = build_alpha_refl_gl alphas (x, y, z) - fun reflp_tac' _ = reflp_tac term_induct alpha_inj 1; - fun symp_tac' _ = symp_tac alpha_induct alpha_inj eqvt 1; - fun transp_tac' _ = transp_tac ctxt alpha_induct alpha_inj term_inj distinct cases eqvt 1; - val reflt = Goal.prove ctxt' [] [] reflg reflp_tac'; - val symt = Goal.prove ctxt' [] [] symg symp_tac'; - val transt = Goal.prove ctxt' [] [] transg transp_tac'; - val [refltg, symtg, transtg] = Variable.export ctxt' ctxt [reflt, symt, transt] - val reflts = HOLogic.conj_elims refltg - val symts = HOLogic.conj_elims symtg - val transts = HOLogic.conj_elims transtg - fun equivp alpha = - let - val equivp = Const (@{const_name equivp}, fastype_of alpha --> @{typ bool}) - val goal = @{term Trueprop} $ (equivp $ alpha) - fun tac _ = equivp_tac reflts symts transts 1 - in - Goal.prove ctxt [] [] goal tac - end -in - map equivp alphas -end -*} - -(* -Tests: -prove alpha1_reflp_aux: {* fst (build_alpha_refl_gl [@{term alpha_rtrm1}, @{term alpha_bp}] ("x","y","z")) *} -by (tactic {* reflp_tac @{thm rtrm1_bp.induct} @{thms alpha1_inj} 1 *}) - -prove alpha1_symp_aux: {* (fst o snd) (build_alpha_refl_gl [@{term alpha_rtrm1}, @{term alpha_bp}] ("x","y","z")) *} -by (tactic {* symp_tac @{thm alpha_rtrm1_alpha_bp.induct} @{thms alpha1_inj} @{thms alpha1_eqvt} 1 *}) - -prove alpha1_transp_aux: {* (snd o snd) (build_alpha_refl_gl [@{term alpha_rtrm1}, @{term alpha_bp}] ("x","y","z")) *} -by (tactic {* transp_tac @{context} @{thm alpha_rtrm1_alpha_bp.induct} @{thms alpha1_inj} @{thms rtrm1.inject bp.inject} @{thms rtrm1.distinct bp.distinct} @{thms alpha_rtrm1.cases alpha_bp.cases} @{thms alpha1_eqvt} 1 *}) - -lemma alpha1_equivp: - "equivp alpha_rtrm1" - "equivp alpha_bp" -apply (tactic {* - (simp_tac (HOL_ss addsimps @{thms equivp_reflp_symp_transp reflp_def symp_def}) - THEN' rtac @{thm conjI} THEN' rtac @{thm allI} THEN' - resolve_tac (HOLogic.conj_elims @{thm alpha1_reflp_aux}) - THEN' rtac @{thm conjI} THEN' rtac @{thm allI} THEN' rtac @{thm allI} THEN' - resolve_tac (HOLogic.conj_elims @{thm alpha1_symp_aux}) THEN' rtac @{thm transp_aux} - THEN' resolve_tac (HOLogic.conj_elims @{thm alpha1_transp_aux}) -) -1 *}) -done*) - -end