diff -r 4b0563bc4b03 -r 7d8949da7d99 Nominal/LamEx2.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Nominal/LamEx2.thy Thu Feb 25 07:48:33 2010 +0100 @@ -0,0 +1,567 @@ +theory LamEx +imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "Abs" +begin + +atom_decl name + +datatype rlam = + rVar "name" +| rApp "rlam" "rlam" +| rLam "name" "rlam" + +fun + rfv :: "rlam \ atom set" +where + rfv_var: "rfv (rVar a) = {atom a}" +| rfv_app: "rfv (rApp t1 t2) = (rfv t1) \ (rfv t2)" +| rfv_lam: "rfv (rLam a t) = (rfv t) - {atom a}" + +instantiation rlam :: pt +begin + +primrec + permute_rlam +where + "permute_rlam pi (rVar a) = rVar (pi \ a)" +| "permute_rlam pi (rApp t1 t2) = rApp (permute_rlam pi t1) (permute_rlam pi t2)" +| "permute_rlam pi (rLam a t) = rLam (pi \ a) (permute_rlam pi t)" + +instance +apply default +apply(induct_tac [!] x) +apply(simp_all) +done + +end + +instantiation rlam :: fs +begin + +lemma neg_conj: + "\(P \ Q) \ (\P) \ (\Q)" + by simp + +lemma infinite_Un: + "infinite (S \ T) \ infinite S \ infinite T" + by simp + +instance +apply default +apply(induct_tac x) +(* var case *) +apply(simp add: supp_def) +apply(fold supp_def)[1] +apply(simp add: supp_at_base) +(* app case *) +apply(simp only: supp_def) +apply(simp only: permute_rlam.simps) +apply(simp only: rlam.inject) +apply(simp only: neg_conj) +apply(simp only: Collect_disj_eq) +apply(simp only: infinite_Un) +apply(simp only: Collect_disj_eq) +apply(simp) +(* lam case *) +apply(simp only: supp_def) +apply(simp only: permute_rlam.simps) +apply(simp only: rlam.inject) +apply(simp only: neg_conj) +apply(simp only: Collect_disj_eq) +apply(simp only: infinite_Un) +apply(simp only: Collect_disj_eq) +apply(simp) +apply(fold supp_def)[1] +apply(simp add: supp_at_base) +done + +end + + +(* for the eqvt proof of the alpha-equivalence *) +declare permute_rlam.simps[eqvt] + +lemma rfv_eqvt[eqvt]: + shows "(pi\rfv t) = rfv (pi\t)" +apply(induct t) +apply(simp_all) +apply(simp add: permute_set_eq atom_eqvt) +apply(simp add: union_eqvt) +apply(simp add: Diff_eqvt) +apply(simp add: permute_set_eq atom_eqvt) +done + +inductive + alpha :: "rlam \ rlam \ bool" ("_ \ _" [100, 100] 100) +where + a1: "a = b \ (rVar a) \ (rVar b)" +| a2: "\t1 \ t2; s1 \ s2\ \ rApp t1 s1 \ rApp t2 s2" +| a3: "\pi. (({atom a}, t) \gen alpha rfv pi ({atom b}, s)) \ rLam a t \ rLam b s" +print_theorems +thm alpha.induct + +lemma a3_inverse: + assumes "rLam a t \ rLam b s" + shows "\pi. (({atom a}, t) \gen alpha rfv pi ({atom b}, s))" +using assms +apply(erule_tac alpha.cases) +apply(auto) +done + +text {* should be automatic with new version of eqvt-machinery *} +lemma alpha_eqvt: + shows "t \ s \ (pi \ t) \ (pi \ s)" +apply(induct rule: alpha.induct) +apply(simp add: a1) +apply(simp add: a2) +apply(simp) +apply(rule a3) +apply(rule alpha_gen_atom_eqvt) +apply(rule rfv_eqvt) +apply assumption +done + +lemma alpha_refl: + shows "t \ t" +apply(induct t rule: rlam.induct) +apply(simp add: a1) +apply(simp add: a2) +apply(rule a3) +apply(rule_tac x="0" in exI) +apply(rule alpha_gen_refl) +apply(assumption) +done + +lemma alpha_sym: + shows "t \ s \ s \ t" + apply(induct rule: alpha.induct) + apply(simp add: a1) + apply(simp add: a2) + apply(rule a3) + apply(erule alpha_gen_compose_sym) + apply(erule alpha_eqvt) + done + +lemma alpha_trans: + shows "t1 \ t2 \ t2 \ t3 \ t1 \ t3" +apply(induct arbitrary: t3 rule: alpha.induct) +apply(simp add: a1) +apply(rotate_tac 4) +apply(erule alpha.cases) +apply(simp_all add: a2) +apply(erule alpha.cases) +apply(simp_all) +apply(rule a3) +apply(erule alpha_gen_compose_trans) +apply(assumption) +apply(erule alpha_eqvt) +done + +lemma alpha_equivp: + shows "equivp alpha" + apply(rule equivpI) + unfolding reflp_def symp_def transp_def + apply(auto intro: alpha_refl alpha_sym alpha_trans) + done + +lemma alpha_rfv: + shows "t \ s \ rfv t = rfv s" + apply(induct rule: alpha.induct) + apply(simp_all add: alpha_gen.simps) + done + +quotient_type lam = rlam / alpha + by (rule alpha_equivp) + +quotient_definition + "Var :: name \ lam" +is + "rVar" + +quotient_definition + "App :: lam \ lam \ lam" +is + "rApp" + +quotient_definition + "Lam :: name \ lam \ lam" +is + "rLam" + +quotient_definition + "fv :: lam \ atom set" +is + "rfv" + +lemma perm_rsp[quot_respect]: + "(op = ===> alpha ===> alpha) permute permute" + apply(auto) + apply(rule alpha_eqvt) + apply(simp) + done + +lemma rVar_rsp[quot_respect]: + "(op = ===> alpha) rVar rVar" + by (auto intro: a1) + +lemma rApp_rsp[quot_respect]: + "(alpha ===> alpha ===> alpha) rApp rApp" + by (auto intro: a2) + +lemma rLam_rsp[quot_respect]: + "(op = ===> alpha ===> alpha) rLam rLam" + apply(auto) + apply(rule a3) + apply(rule_tac x="0" in exI) + unfolding fresh_star_def + apply(simp add: fresh_star_def fresh_zero_perm alpha_gen.simps) + apply(simp add: alpha_rfv) + done + +lemma rfv_rsp[quot_respect]: + "(alpha ===> op =) rfv rfv" +apply(simp add: alpha_rfv) +done + + +section {* lifted theorems *} + +lemma lam_induct: + "\\name. P (Var name); + \lam1 lam2. \P lam1; P lam2\ \ P (App lam1 lam2); + \name lam. P lam \ P (Lam name lam)\ + \ P lam" + apply (lifting rlam.induct) + done + +instantiation lam :: pt +begin + +quotient_definition + "permute_lam :: perm \ lam \ lam" +is + "permute :: perm \ rlam \ rlam" + +lemma permute_lam [simp]: + shows "pi \ Var a = Var (pi \ a)" + and "pi \ App t1 t2 = App (pi \ t1) (pi \ t2)" + and "pi \ Lam a t = Lam (pi \ a) (pi \ t)" +apply(lifting permute_rlam.simps) +done + +instance +apply default +apply(induct_tac [!] x rule: lam_induct) +apply(simp_all) +done + +end + +lemma fv_lam [simp]: + shows "fv (Var a) = {atom a}" + and "fv (App t1 t2) = fv t1 \ fv t2" + and "fv (Lam a t) = fv t - {atom a}" +apply(lifting rfv_var rfv_app rfv_lam) +done + +lemma fv_eqvt: + shows "(p \ fv t) = fv (p \ t)" +apply(lifting rfv_eqvt) +done + +lemma a1: + "a = b \ Var a = Var b" + by (lifting a1) + +lemma a2: + "\x = xa; xb = xc\ \ App x xb = App xa xc" + by (lifting a2) + +lemma alpha_gen_rsp_pre: + assumes a5: "\t s. R t s \ R (pi \ t) (pi \ s)" + and a1: "R s1 t1" + and a2: "R s2 t2" + and a3: "\a b c d. R a b \ R c d \ R1 a c = R2 b d" + and a4: "\x y. R x y \ fv1 x = fv2 y" + shows "(a, s1) \gen R1 fv1 pi (b, s2) = (a, t1) \gen R2 fv2 pi (b, t2)" +apply (simp add: alpha_gen.simps) +apply (simp only: a4[symmetric, OF a1] a4[symmetric, OF a2]) +apply auto +apply (subst a3[symmetric]) +apply (rule a5) +apply (rule a1) +apply (rule a2) +apply (assumption) +apply (subst a3) +apply (rule a5) +apply (rule a1) +apply (rule a2) +apply (assumption) +done + +lemma [quot_respect]: "(prod_rel op = alpha ===> + (alpha ===> alpha ===> op =) ===> (alpha ===> op =) ===> op = ===> prod_rel op = alpha ===> op =) + alpha_gen alpha_gen" +apply simp +apply clarify +apply (rule alpha_gen_rsp_pre[of "alpha",OF alpha_eqvt]) +apply auto +done + +(* pi_abs would be also sufficient to prove the next lemma *) +lemma replam_eqvt: "pi \ (rep_lam x) = rep_lam (pi \ x)" +apply (unfold rep_lam_def) +sorry + +lemma [quot_preserve]: "(prod_fun id rep_lam ---> + (abs_lam ---> abs_lam ---> id) ---> (abs_lam ---> id) ---> id ---> (prod_fun id rep_lam) ---> id) + alpha_gen = alpha_gen" +apply (simp add: expand_fun_eq alpha_gen.simps Quotient_abs_rep[OF Quotient_lam]) +apply (simp add: replam_eqvt) +apply (simp only: Quotient_abs_rep[OF Quotient_lam]) +apply auto +done + + +lemma alpha_prs [quot_preserve]: "(rep_lam ---> rep_lam ---> id) alpha = (op =)" +apply (simp add: expand_fun_eq) +apply (simp add: Quotient_rel_rep[OF Quotient_lam]) +done + +lemma a3: + "\pi. ({atom a}, t) \gen (op =) fv pi ({atom b}, s) \ Lam a t = Lam b s" + apply (unfold alpha_gen) + apply (lifting a3[unfolded alpha_gen]) + done + + +lemma a3_inv: + "Lam a t = Lam b s \ \pi. ({atom a}, t) \gen (op =) fv pi ({atom b}, s)" + apply (unfold alpha_gen) + apply (lifting a3_inverse[unfolded alpha_gen]) + done + +lemma alpha_cases: + "\a1 = a2; \a b. \a1 = Var a; a2 = Var b; a = b\ \ P; + \t1 t2 s1 s2. \a1 = App t1 s1; a2 = App t2 s2; t1 = t2; s1 = s2\ \ P; + \a t b s. \a1 = Lam a t; a2 = Lam b s; \pi. ({atom a}, t) \gen (op =) fv pi ({atom b}, s)\ + \ P\ + \ P" +unfolding alpha_gen +apply (lifting alpha.cases[unfolded alpha_gen]) +done + +(* not sure whether needed *) +lemma alpha_induct: + "\qx = qxa; \a b. a = b \ qxb (Var a) (Var b); + \x xa xb xc. \x = xa; qxb x xa; xb = xc; qxb xb xc\ \ qxb (App x xb) (App xa xc); + \a t b s. \pi. ({atom a}, t) \gen (\x1 x2. x1 = x2 \ qxb x1 x2) fv pi ({atom b}, s) \ qxb (Lam a t) (Lam b s)\ + \ qxb qx qxa" +unfolding alpha_gen by (lifting alpha.induct[unfolded alpha_gen]) + +(* should they lift automatically *) +lemma lam_inject [simp]: + shows "(Var a = Var b) = (a = b)" + and "(App t1 t2 = App s1 s2) = (t1 = s1 \ t2 = s2)" +apply(lifting rlam.inject(1) rlam.inject(2)) +apply(regularize) +prefer 2 +apply(regularize) +prefer 2 +apply(auto) +apply(drule alpha.cases) +apply(simp_all) +apply(simp add: alpha.a1) +apply(drule alpha.cases) +apply(simp_all) +apply(drule alpha.cases) +apply(simp_all) +apply(rule alpha.a2) +apply(simp_all) +done + +thm a3_inv +lemma Lam_pseudo_inject: + shows "(Lam a t = Lam b s) = (\pi. ({atom a}, t) \gen (op =) fv pi ({atom b}, s))" +apply(rule iffI) +apply(rule a3_inv) +apply(assumption) +apply(rule a3) +apply(assumption) +done + +lemma rlam_distinct: + shows "\(rVar nam \ rApp rlam1' rlam2')" + and "\(rApp rlam1' rlam2' \ rVar nam)" + and "\(rVar nam \ rLam nam' rlam')" + and "\(rLam nam' rlam' \ rVar nam)" + and "\(rApp rlam1 rlam2 \ rLam nam' rlam')" + and "\(rLam nam' rlam' \ rApp rlam1 rlam2)" +apply auto +apply (erule alpha.cases) +apply (simp_all only: rlam.distinct) +apply (erule alpha.cases) +apply (simp_all only: rlam.distinct) +apply (erule alpha.cases) +apply (simp_all only: rlam.distinct) +apply (erule alpha.cases) +apply (simp_all only: rlam.distinct) +apply (erule alpha.cases) +apply (simp_all only: rlam.distinct) +apply (erule alpha.cases) +apply (simp_all only: rlam.distinct) +done + +lemma lam_distinct[simp]: + shows "Var nam \ App lam1' lam2'" + and "App lam1' lam2' \ Var nam" + and "Var nam \ Lam nam' lam'" + and "Lam nam' lam' \ Var nam" + and "App lam1 lam2 \ Lam nam' lam'" + and "Lam nam' lam' \ App lam1 lam2" +apply(lifting rlam_distinct(1) rlam_distinct(2) rlam_distinct(3) rlam_distinct(4) rlam_distinct(5) rlam_distinct(6)) +done + +lemma var_supp1: + shows "(supp (Var a)) = (supp a)" + apply (simp add: supp_def) + done + +lemma var_supp: + shows "(supp (Var a)) = {a:::name}" + using var_supp1 by (simp add: supp_at_base) + +lemma app_supp: + shows "supp (App t1 t2) = (supp t1) \ (supp t2)" +apply(simp only: supp_def lam_inject) +apply(simp add: Collect_imp_eq Collect_neg_eq) +done + +(* supp for lam *) +lemma lam_supp1: + shows "(supp (atom x, t)) supports (Lam x t) " +apply(simp add: supports_def) +apply(fold fresh_def) +apply(simp add: fresh_Pair swap_fresh_fresh) +apply(clarify) +apply(subst swap_at_base_simps(3)) +apply(simp_all add: fresh_atom) +done + +lemma lam_fsupp1: + assumes a: "finite (supp t)" + shows "finite (supp (Lam x t))" +apply(rule supports_finite) +apply(rule lam_supp1) +apply(simp add: a supp_Pair supp_atom) +done + +instance lam :: fs +apply(default) +apply(induct_tac x rule: lam_induct) +apply(simp add: var_supp) +apply(simp add: app_supp) +apply(simp add: lam_fsupp1) +done + +lemma supp_fv: + shows "supp t = fv t" +apply(induct t rule: lam_induct) +apply(simp add: var_supp) +apply(simp add: app_supp) +apply(subgoal_tac "supp (Lam name lam) = supp (Abs {atom name} lam)") +apply(simp add: supp_Abs) +apply(simp (no_asm) add: supp_def permute_set_eq atom_eqvt) +apply(simp add: Lam_pseudo_inject) +apply(simp add: Abs_eq_iff) +apply(simp add: alpha_gen.simps) +apply(simp add: supp_eqvt[symmetric] fv_eqvt[symmetric]) +done + +lemma lam_supp2: + shows "supp (Lam x t) = supp (Abs {atom x} t)" +apply(simp add: supp_def permute_set_eq atom_eqvt) +apply(simp add: Lam_pseudo_inject) +apply(simp add: Abs_eq_iff) +apply(simp add: alpha_gen supp_fv) +done + +lemma lam_supp: + shows "supp (Lam x t) = ((supp t) - {atom x})" +apply(simp add: lam_supp2) +apply(simp add: supp_Abs) +done + +lemma fresh_lam: + "(atom a \ Lam b t) \ (a = b) \ (a \ b \ atom a \ t)" +apply(simp add: fresh_def) +apply(simp add: lam_supp) +apply(auto) +done + +lemma lam_induct_strong: + fixes a::"'a::fs" + assumes a1: "\name b. P b (Var name)" + and a2: "\lam1 lam2 b. \\c. P c lam1; \c. P c lam2\ \ P b (App lam1 lam2)" + and a3: "\name lam b. \\c. P c lam; (atom name) \ b\ \ P b (Lam name lam)" + shows "P a lam" +proof - + have "\pi a. P a (pi \ lam)" + proof (induct lam rule: lam_induct) + case (1 name pi) + show "P a (pi \ Var name)" + apply (simp) + apply (rule a1) + done + next + case (2 lam1 lam2 pi) + have b1: "\pi a. P a (pi \ lam1)" by fact + have b2: "\pi a. P a (pi \ lam2)" by fact + show "P a (pi \ App lam1 lam2)" + apply (simp) + apply (rule a2) + apply (rule b1) + apply (rule b2) + done + next + case (3 name lam pi a) + have b: "\pi a. P a (pi \ lam)" by fact + obtain c::name where fr: "atom c\(a, pi\name, pi\lam)" + apply(rule obtain_atom) + apply(auto) + sorry + from b fr have p: "P a (Lam c (((c \ (pi \ name)) + pi)\lam))" + apply - + apply(rule a3) + apply(blast) + apply(simp add: fresh_Pair) + done + have eq: "(atom c \ atom (pi\name)) \ Lam (pi \ name) (pi \ lam) = Lam (pi \ name) (pi \ lam)" + apply(rule swap_fresh_fresh) + using fr + apply(simp add: fresh_lam fresh_Pair) + apply(simp add: fresh_lam fresh_Pair) + done + show "P a (pi \ Lam name lam)" + apply (simp) + apply(subst eq[symmetric]) + using p + apply(simp only: permute_lam) + apply(simp add: flip_def) + done + qed + then have "P a (0 \ lam)" by blast + then show "P a lam" by simp +qed + + +lemma var_fresh: + fixes a::"name" + shows "(atom a \ (Var b)) = (atom a \ b)" + apply(simp add: fresh_def) + apply(simp add: var_supp1) + done + + + +end +