diff -r 8639077e0f43 -r 7c607df46a0a Nominal/Nominal2_Supp.thy --- a/Nominal/Nominal2_Supp.thy Thu Mar 18 10:15:57 2010 +0100 +++ b/Nominal/Nominal2_Supp.thy Thu Mar 18 11:33:37 2010 +0100 @@ -17,23 +17,23 @@ definition fresh_star :: "atom set \ 'a::pt \ bool" ("_ \* _" [80,80] 80) where - "xs \* c \ \x \ xs. x \ c" + "as \* x \ \a \ as. a \ x" lemma fresh_star_prod: - fixes xs::"atom set" - shows "xs \* (a, b) = (xs \* a \ xs \* b)" + fixes as::"atom set" + shows "as \* (x, y) = (as \* x \ as \* y)" by (auto simp add: fresh_star_def fresh_Pair) lemma fresh_star_union: - shows "(xs \ ys) \* c = (xs \* c \ ys \* c)" + shows "(as \ bs) \* x = (as \* x \ bs \* x)" by (auto simp add: fresh_star_def) lemma fresh_star_insert: - shows "(insert x ys) \* c = (x \ c \ ys \* c)" + shows "(insert a as) \* x = (a \ x \ as \* x)" by (auto simp add: fresh_star_def) lemma fresh_star_Un_elim: - "((S \ T) \* c \ PROP C) \ (S \* c \ T \* c \ PROP C)" + "((as \ bs) \* x \ PROP C) \ (as \* x \ bs \* x \ PROP C)" unfolding fresh_star_def apply(rule) apply(erule meta_mp) @@ -41,12 +41,12 @@ done lemma fresh_star_insert_elim: - "(insert x S \* c \ PROP C) \ (x \ c \ S \* c \ PROP C)" + "(insert a as \* x \ PROP C) \ (a \ x \ as \* x \ PROP C)" unfolding fresh_star_def by rule (simp_all add: fresh_star_def) lemma fresh_star_empty_elim: - "({} \* c \ PROP C) \ PROP C" + "({} \* x \ PROP C) \ PROP C" by (simp add: fresh_star_def) lemma fresh_star_unit_elim: