diff -r d6d22254aeb7 -r 7c59dd8e5435 Nominal/Term5.thy --- a/Nominal/Term5.thy Tue Mar 16 17:20:46 2010 +0100 +++ b/Nominal/Term5.thy Tue Mar 16 18:18:08 2010 +0100 @@ -61,7 +61,7 @@ print_theorems lemma alpha5_reflp: -"y \5 y \ (x \l x \ alpha_rbv5 0 x x)" +"y \5 y \ (x \l x \ alpha_rbv5 x x)" apply (rule rtrm5_rlts.induct) apply (simp_all add: alpha5_inj) apply (rule_tac x="0::perm" in exI) @@ -71,25 +71,21 @@ lemma alpha5_symp: "(a \5 b \ b \5 a) \ (x \l y \ y \l x) \ -(alpha_rbv5 p x y \ alpha_rbv5 (-p) y x)" +(alpha_rbv5 x y \ alpha_rbv5 y x)" apply (rule alpha_rtrm5_alpha_rlts_alpha_rbv5.induct) apply (simp_all add: alpha5_inj) apply (erule exE) apply (rule_tac x="- pi" in exI) apply clarify -apply (erule alpha_gen_compose_sym) -apply (simp add: alpha5_eqvt) -(* Works for non-recursive, proof is done here *) -apply(clarify) -apply (rotate_tac 1) -apply (frule_tac p="- pi" in alpha5_eqvt(1)) -apply simp +apply (rule conjI) +apply (erule_tac [!] alpha_gen_compose_sym) +apply (simp_all add: alpha5_eqvt) done lemma alpha5_transp: "(a \5 b \ (\c. b \5 c \ a \5 c)) \ (x \l y \ (\z. y \l z \ x \l z)) \ -(alpha_rbv5 p k l \ (\m q. alpha_rbv5 q l m \ alpha_rbv5 (q + p) k m))" +(alpha_rbv5 k l \ (\m. alpha_rbv5 l m \ alpha_rbv5 k m))" (*apply (tactic {* transp_tac @{context} @{thm alpha_rtrm5_alpha_rlts_alpha_rbv5.induct} @{thms alpha5_inj} @{thms rtrm5.distinct rtrm5.inject rlts.distinct rlts.inject} [] @{thms alpha_rtrm5.cases alpha_rlts.cases alpha_rbv5.cases} @{thms alpha5_eqvt} 1 *})*) apply (rule alpha_rtrm5_alpha_rlts_alpha_rbv5.induct) apply (rule_tac [!] allI) @@ -101,27 +97,17 @@ apply (simp_all add: alpha5_inj) apply (tactic {* eetac @{thm exi_sum} @{context} 1 *}) apply clarify -apply simp +apply (rule conjI) +apply (erule alpha_gen_compose_trans) +apply (assumption) +apply (simp add: alpha5_eqvt) apply (erule alpha_gen_compose_trans) apply (assumption) apply (simp add: alpha5_eqvt) apply (tactic {* (imp_elim_tac @{thms alpha_rtrm5.cases alpha_rlts.cases alpha_rbv5.cases} @{context}) 1 *}) apply (simp_all add: alpha5_inj) -apply (rule allI) -apply (tactic {* (imp_elim_tac @{thms alpha_rtrm5.cases alpha_rlts.cases alpha_rbv5.cases} @{context}) 1 *}) -apply (simp_all add: alpha5_inj) -apply (rule allI) apply (tactic {* (imp_elim_tac @{thms alpha_rtrm5.cases alpha_rlts.cases alpha_rbv5.cases} @{context}) 1 *}) apply (simp_all add: alpha5_inj) -(* Works for non-recursive, proof is done here *) -apply clarify -apply (rotate_tac 1) -apply (frule_tac p="- pia" in alpha5_eqvt(1)) -apply (erule_tac x="- pia \ rtrm5aa" in allE) -apply simp -apply (rotate_tac -1) -apply (frule_tac p="pia" in alpha5_eqvt(1)) -apply simp done lemma alpha5_equivp: @@ -157,10 +143,9 @@ lemma alpha5_rfv: "(t \5 s \ fv_rtrm5 t = fv_rtrm5 s)" "(l \l m \ (fv_rlts l = fv_rlts m \ fv_rbv5 l = fv_rbv5 m))" - "(alpha_rbv5 p b c \ fv_rbv5 (p \ b) = fv_rbv5 c)" + "(alpha_rbv5 b c \ fv_rbv5 b = fv_rbv5 c)" apply(induct rule: alpha_rtrm5_alpha_rlts_alpha_rbv5.inducts) apply(simp_all add: eqvts) - thm alpha5_inj apply(simp add: alpha_gen) apply(clarify) apply(simp) @@ -185,13 +170,11 @@ "(op = ===> alpha_rtrm5 ===> alpha_rlts ===> alpha_rlts) rLcons rLcons" "(op = ===> alpha_rtrm5 ===> alpha_rtrm5) permute permute" "(op = ===> alpha_rlts ===> alpha_rlts) permute permute" - "(op = ===> alpha_rlts ===> alpha_rlts ===> op =) alpha_rbv5 alpha_rbv5" + "(alpha_rlts ===> alpha_rlts ===> op =) alpha_rbv5 alpha_rbv5" apply (simp_all add: alpha5_inj alpha5_rfv alpha5_eqvt bv_list_rsp) apply (clarify) - apply (rule_tac x="0" in exI) apply (simp add: fresh_star_def fresh_zero_perm alpha_gen alpha5_rfv) - apply (erule alpha_rtrm5_alpha_rlts_alpha_rbv5.inducts(2)) - apply (simp_all add: alpha5_inj) - apply clarify + apply (rule_tac x="0" in exI) + apply (simp add: fresh_star_def fresh_zero_perm alpha_gen alpha5_rfv) apply clarify apply (erule alpha_rtrm5_alpha_rlts_alpha_rbv5.inducts(2)) apply simp_all @@ -234,14 +217,16 @@ lemmas alpha5_INJ = alpha5_inj[unfolded alpha_gen, quot_lifted, folded alpha_gen] lemma lets_bla: - "x \ z \ y \ z \ x \ y \(Lt5 (Lcons x (Vr5 y) Lnil) (Vr5 x)) = (Lt5 (Lcons x (Vr5 z) Lnil) (Vr5 x))" + "x \ z \ y \ z \ x \ y \(Lt5 (Lcons x (Vr5 y) Lnil) (Vr5 x)) \ (Lt5 (Lcons x (Vr5 z) Lnil) (Vr5 x))" apply (simp only: alpha5_INJ) apply (simp only: bv5) apply simp -apply (rule_tac x="(z \ y)" in exI) +apply (rule allI) apply (simp_all add: alpha_gen) apply (simp add: permute_trm5_lts fresh_star_def alpha5_INJ eqvts) -done +apply (rule impI) +apply (rule impI) +sorry (* The assumption is false, so it is true *) lemma lets_ok: "(Lt5 (Lcons x (Vr5 x) Lnil) (Vr5 x)) = (Lt5 (Lcons y (Vr5 y) Lnil) (Vr5 y))" @@ -262,12 +247,13 @@ lemma lets_not_ok1: - "(Lt5 (Lcons x (Vr5 x) (Lcons y (Vr5 y) Lnil)) (Ap5 (Vr5 x) (Vr5 y))) = + "x \ y \ + (Lt5 (Lcons x (Vr5 x) (Lcons y (Vr5 y) Lnil)) (Ap5 (Vr5 x) (Vr5 y))) \ (Lt5 (Lcons y (Vr5 x) (Lcons x (Vr5 y) Lnil)) (Ap5 (Vr5 x) (Vr5 y)))" apply (simp add: alpha5_INJ alpha_gen) -apply (rule_tac x="0::perm" in exI) -apply (simp add: permute_trm5_lts fresh_star_def alpha5_INJ(5) alpha5_INJ(2) alpha5_INJ(1) eqvts) -apply auto +apply (simp add: permute_trm5_lts eqvts) +apply (simp add: alpha5_INJ(5)) +apply (simp add: alpha5_INJ(1)) done lemma distinct_helper: