diff -r 42e7f323913a -r 7beed9b75ea2 FSet.thy --- a/FSet.thy Sat Nov 28 08:46:24 2009 +0100 +++ b/FSet.thy Sat Nov 28 13:54:48 2009 +0100 @@ -328,9 +328,11 @@ apply (tactic {* lift_tac_fset @{context} @{thm not_mem_card1} 1 *}) done -lemma "\f g z a x. FOLD f g (z::'b) (INSERT a x) = +ML {* fun r_mk_comb_tac_fset lthy = r_mk_comb_tac' lthy rty [quot] [rel_refl] [trans2] rsp_thms *} + +lemma "FOLD f g (z::'b) (INSERT a x) = (if rsp_fold f then if IN a x then FOLD f g z x else f (g a) (FOLD f g z x) else z)" -apply (tactic {* lift_tac_fset @{context} @{thm fold1.simps(2)} 1 *}) +apply(tactic {* lift_tac_fset @{context} @{thm fold1.simps(2)} 1 *}) done lemma "fmap f (FUNION (x::'b fset) (xa::'b fset)) = FUNION (fmap f x) (fmap f xa)" @@ -341,8 +343,6 @@ apply (tactic {* lift_tac_fset @{context} @{thm append_assoc} 1 *}) done -ML {* fun r_mk_comb_tac_fset lthy = r_mk_comb_tac' lthy rty [quot] [rel_refl] [trans2] rsp_thms *} - lemma cheat: "P" sorry lemma "\P EMPTY; \a x. P x \ P (INSERT a x)\ \ P l"