diff -r dbc9e88c44da -r 7b74cf843942 Nominal/FSet.thy --- a/Nominal/FSet.thy Tue Apr 20 15:59:57 2010 +0200 +++ b/Nominal/FSet.thy Wed Apr 21 09:13:32 2010 +0200 @@ -563,10 +563,6 @@ "ffold :: ('a \ 'b \ 'b) \ 'b \ 'a fset \ 'b" is "ffold_raw" -lemma funion_sym_pre: - "xs @ ys \ ys @ xs" - by auto - lemma set_cong: shows "(set x = set y) = (x \ y)" by auto @@ -760,13 +756,9 @@ shows "S |\| {||} = S" by (lifting append_Nil2) -lemma funion_sym: - shows "S |\| T = T |\| S" - by (lifting funion_sym_pre) +thm sup.commute[where 'a="'a fset"] -lemma funion_assoc: - shows "S |\| T |\| U = S |\| (T |\| U)" - by (lifting append_assoc) +thm sup.assoc[where 'a="'a fset"] lemma singleton_union_left: "{|a|} |\| S = finsert a S" @@ -774,7 +766,7 @@ lemma singleton_union_right: "S |\| {|a|} = finsert a S" - by (subst funion_sym) simp + by (subst sup.commute) simp section {* Induction and Cases rules for finite sets *}