diff -r f89ee40fbb08 -r 78d828f43cdf Attic/Quot/Quotient_Product.thy --- a/Attic/Quot/Quotient_Product.thy Sat Dec 17 16:57:25 2011 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,104 +0,0 @@ -(* Title: Quotient_Product.thy - Author: Cezary Kaliszyk and Christian Urban -*) -theory Quotient_Product -imports Quotient Quotient_Syntax -begin - -section {* Quotient infrastructure for the product type. *} - -fun - prod_rel -where - "prod_rel R1 R2 = (\(a, b) (c, d). R1 a c \ R2 b d)" - -declare [[map * = (prod_fun, prod_rel)]] - - -lemma prod_equivp[quot_equiv]: - assumes a: "equivp R1" - assumes b: "equivp R2" - shows "equivp (prod_rel R1 R2)" - apply(rule equivpI) - unfolding reflp_def symp_def transp_def - apply(simp_all add: split_paired_all) - apply(blast intro: equivp_reflp[OF a] equivp_reflp[OF b]) - apply(blast intro: equivp_symp[OF a] equivp_symp[OF b]) - apply(blast intro: equivp_transp[OF a] equivp_transp[OF b]) - done - -lemma prod_quotient[quot_thm]: - assumes q1: "Quotient R1 Abs1 Rep1" - assumes q2: "Quotient R2 Abs2 Rep2" - shows "Quotient (prod_rel R1 R2) (prod_fun Abs1 Abs2) (prod_fun Rep1 Rep2)" - unfolding Quotient_def - apply(simp add: split_paired_all) - apply(simp add: Quotient_abs_rep[OF q1] Quotient_rel_rep[OF q1]) - apply(simp add: Quotient_abs_rep[OF q2] Quotient_rel_rep[OF q2]) - using q1 q2 - unfolding Quotient_def - apply(blast) - done - -lemma Pair_rsp[quot_respect]: - assumes q1: "Quotient R1 Abs1 Rep1" - assumes q2: "Quotient R2 Abs2 Rep2" - shows "(R1 ===> R2 ===> prod_rel R1 R2) Pair Pair" - by simp - -lemma Pair_prs[quot_preserve]: - assumes q1: "Quotient R1 Abs1 Rep1" - assumes q2: "Quotient R2 Abs2 Rep2" - shows "(Rep1 ---> Rep2 ---> (prod_fun Abs1 Abs2)) Pair = Pair" - apply(simp add: expand_fun_eq) - apply(simp add: Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]) - done - -lemma fst_rsp[quot_respect]: - assumes "Quotient R1 Abs1 Rep1" - assumes "Quotient R2 Abs2 Rep2" - shows "(prod_rel R1 R2 ===> R1) fst fst" - by simp - -lemma fst_prs[quot_preserve]: - assumes q1: "Quotient R1 Abs1 Rep1" - assumes q2: "Quotient R2 Abs2 Rep2" - shows "(prod_fun Rep1 Rep2 ---> Abs1) fst = fst" - apply(simp add: expand_fun_eq) - apply(simp add: Quotient_abs_rep[OF q1]) - done - -lemma snd_rsp[quot_respect]: - assumes "Quotient R1 Abs1 Rep1" - assumes "Quotient R2 Abs2 Rep2" - shows "(prod_rel R1 R2 ===> R2) snd snd" - by simp - -lemma snd_prs[quot_preserve]: - assumes q1: "Quotient R1 Abs1 Rep1" - assumes q2: "Quotient R2 Abs2 Rep2" - shows "(prod_fun Rep1 Rep2 ---> Abs2) snd = snd" - apply(simp add: expand_fun_eq) - apply(simp add: Quotient_abs_rep[OF q2]) - done - -lemma split_rsp[quot_respect]: - shows "((R1 ===> R2 ===> (op =)) ===> (prod_rel R1 R2) ===> (op =)) split split" - by auto - -lemma split_prs[quot_preserve]: - assumes q1: "Quotient R1 Abs1 Rep1" - and q2: "Quotient R2 Abs2 Rep2" - shows "(((Abs1 ---> Abs2 ---> id) ---> prod_fun Rep1 Rep2 ---> id) split) = split" - by (simp add: expand_fun_eq Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]) - -lemma prod_fun_id[id_simps]: - shows "prod_fun id id = id" - by (simp add: prod_fun_def) - -lemma prod_rel_eq[id_simps]: - shows "prod_rel (op =) (op =) = (op =)" - by (simp add: expand_fun_eq) - - -end