diff -r 6853ce305118 -r 78d0adf8a086 Nominal/TySch.thy --- a/Nominal/TySch.thy Fri Mar 19 09:31:38 2010 +0100 +++ b/Nominal/TySch.thy Fri Mar 19 10:23:52 2010 +0100 @@ -62,18 +62,25 @@ assumes a1: "\name b. P b (Var name)" and a2: "\t1 t2 b. \\c. P c t1; \c. P c t2\ \ P b (Fun t1 t2)" and a3: "\fset t b. \\c. P c t; fset_to_set (fmap atom fset) \* b\ \ P' b (All fset t)" - shows "P a t \ P' d ts " + shows "P (a :: 'a :: pt) t \ P' d ts " proof - - have " (\p. P a (p \ t)) \ (\p. P' d (p \ ts))" + have " (\p a. P a (p \ t)) \ (\p d. P' d (p \ ts))" apply (rule t_tyS.induct) apply (simp add: a1) - apply (simp_all) - apply (rule allI) + apply (simp) + apply (rule allI)+ apply (rule a2) - defer defer + apply simp + apply simp + apply (rule allI) apply (rule allI) + apply(subgoal_tac "\new::name fset. fset_to_set (fmap atom new) \* (d, All (p \ fset) (p \ t)) + \ fcard new = fcard fset") + apply clarify + (*apply(rule_tac t="p \ All fset t" and + s="(((p \ fset) \ new) + p) \ All fset t" in subst) apply (rule a3) - apply simp_all + apply simp_all*) sorry then have "P a (0 \ t) \ P' d (0 \ ts)" by blast then show ?thesis by simp